
Emanuele G Cauda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7343342/publications.pdf Version: 2024-02-01

EMANUELE C. CAUDA

#	Article	IF	CITATIONS
1	Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site. Journal of Occupational and Environmental Hygiene, 2016, 13, D39-D45.	1.0	32
2	Toward Developing A New Occupational Exposure Metric Approach for Characterization of Diesel Aerosols. Aerosol Science and Technology, 2012, 46, 1370-1381.	3.1	31
3	Deposition Uniformity of Coal Dust on Filters and Its Effect on the Accuracy of FTIR Analyses for Silica. Aerosol Science and Technology, 2013, 47, 724-733.	3.1	25
4	Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression. Applied Spectroscopy, 2017, 71, 1014-1024.	2.2	22
5	Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust. Aerosol and Air Quality Research, 2017, 17, 24-33.	2.1	19
6	A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method. Journal of Occupational and Environmental Hygiene, 2018, 15, 743-754.	1.0	18
7	Metrological Assessment of a Portable Analyzer for Monitoring the Particle Size Distribution of Ultrafine Particles. Annals of Occupational Hygiene, 2014, 58, 860-76.	1.9	17
8	Evaluating the use of a field-based silica monitoring approach with dust from copper mines. Journal of Occupational and Environmental Hygiene, 2018, 15, 732-742.	1.0	16
9	An Evaluation of Sharp Cut Cyclones for Sampling Diesel Particulate Matter Aerosol in the Presence of Respirable Dust. Annals of Occupational Hygiene, 2014, 58, 995-1005.	1.9	10
10	Direct infrared spectroscopy for the size-independent identification and quantification of respirable particles relative mass in mine dusts. Analytical and Bioanalytical Chemistry, 2020, 412, 3499-3508.	3.7	10
11	Performance Comparison of Four Portable FTIR Instruments for Direct-on-Filter Measurement of Respirable Crystalline Silica. Annals of Work Exposures and Health, 2020, 64, 536-546.	1.4	9
12	Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples. Journal of Occupational and Environmental Hygiene, 2015, 12, 421-430.	1.0	7
13	Complexity of Respirable Dust Found in Mining Operations as Characterized by X-ray Diffraction and FTIR Analysis. Minerals (Basel, Switzerland), 2021, 11, 383.	2.0	7
14	Respirable size-selective sampler for end-of-shift quartz measurement: Development and performance. Journal of Occupational and Environmental Hygiene, 2017, 14, 335-342.	1.0	6
15	A novel sampling cassette for field-based analysis of respirable crystalline silica. Journal of Occupational and Environmental Hygiene, 2021, 18, 103-109.	1.0	6
16	Analysis of the Silica Percent in Airborne Respirable Mine Dust Samples From U.S. Operations. , 2013, , 12-27.		6
17	Performance Comparison of Real-Time Light Scattering Dust Monitors Across Dust Types and Humidity Levels. Mining, Metallurgy and Exploration, 2019, 36, 741-749.	0.8	5
18	A field study on the possible attachment of DPM and respirable dust in mining environments. Journal of Sustainable Mining, 2019, 18, 100-108.	0.2	5

Emanuele G Cauda

#	Article	IF	CITATIONS
19	Use of the Field-Based Silica Monitoring Technique in a Coal Mine: A Case Study. Mining, Metallurgy and Exploration, 2020, 37, 717-726.	0.8	4
20	A Novel Calibration Method for the Quantification of Respirable Particles in Mining Scenarios Using Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2021, 75, 307-316.	2.2	4
21	Laboratory comparison of new high flow rate respirable size-selective sampler. Journal of Occupational and Environmental Hygiene, 2018, 15, 755-765.	1.0	3
22	Testing a revised inlet for the personal dust monitor. Journal of Occupational and Environmental Hygiene, 2019, 16, 242-249.	1.0	3
23	Monitoring Worker Exposure to Respirable Crystalline Silica: Application for Data-driven Predictive Modeling for End-of-Shift Exposure Assessment. Annals of Work Exposures and Health, 2022, 66, 1010-1021.	1.4	1
24	Segregation of respirable dust for chemical and toxicological analyses. Archives of Environmental and Occupational Health, 2021, 76, 134-144.	1.4	0