Howard M Milchberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7342632/publications.pdf Version: 2024-02-01

225	7.004	50276	64796
205	7,024	46	79
papers	citations	h-index	g-index
211	211	211	3576
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extreme sensitivity charge detection. Physics Today, 2022, 75, 62-63.	0.3	Ο
2	Phase front retrieval and correction of Bessel beams. Optics Express, 2022, 30, 11360.	3.4	6
3	Meter-scale plasma waveguides for multi-GeV laser wakefield acceleration. Physics of Plasmas, 2022, 29, 073101.	1.9	6
4	Transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI). Optics Letters, 2021, 46, 1013.	3.3	13
5	Transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI): publisher's note. Optics Letters, 2021, 46, 1433.	3.3	0
6	Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica, 2021, 8, 594.	9.3	64
7	Laser-Accelerated, Low-Divergence 15-MeV Quasimonoenergetic Electron Bunches at 1ÂkHz. Physical Review X, 2021, 11, .	8.9	21
8	Transient Grating Single-shot Supercontinuum Spectral Interferometry (TG-SSSI). , 2021, , .		0
9	Ultrabroadband microwave radiation from near- and mid-infrared laser-produced plasmas in air. Physical Review A, 2021, 104, .	2.5	7
10	Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Optics Letters, 2021, 46, 5449.	3.3	12
11	Mode Structure and Orbital Angular Momentum of Spatiotemporal Optical Vortex Pulses. Physical Review Letters, 2021, 127, 193901.	7.8	55
12	Second harmonic generation of spatiotemporal optical vortices (STOVs) and conservation of orbital angular momentum. , 2021, , .		0
13	Mode structure and orbital angular momentum of spatio-temporal optical vortex (STOV) pulses. , 2021, , .		0
14	Applications of intense mid-infrared laser-matter interactions. , 2021, , .		0
15	Second Harmonic Generation of Spatiotemporal Optical Vortices and Conservation of Orbital Angular Momentum. , 2021, , .		1
16	Optical Guiding in Meter-Scale Plasma Waveguides. Physical Review Letters, 2020, 125, 074801.	7.8	48
17	Self-Guiding of Long-Wave Infrared Laser Pulses Mediated by Avalanche Ionization. Physical Review Letters, 2020, 125, 133201.	7.8	13
18	Absolute Measurement of Laser Ionization Yield in Atmospheric Pressure Range Gases over 14 Decades. Physical Review Letters, 2020, 124, 013201.	7.8	17

#	Article	IF	CITATIONS
19	Guiding of high-intensity laser pulses in 100-mm-long hydrodynamic optical-field-ionized plasma channels. Physical Review Accelerators and Beams, 2020, 23, .	1.6	18
20	Simplified single-shot supercontinuum spectral interferometry. Optics Express, 2020, 28, 11023.	3.4	2
21	Molecular quantum wakes for clearing fog. Optics Express, 2020, 28, 11463.	3.4	12
22	Nonlinearity and ionization in Xe: experiment-based calibration of a numerical model. Optics Letters, 2020, 45, 5780.	3.3	2
23	Efficient terahertz and Brunei harmonic generation from air plasma with femtosecond two-color mid-infrared lasers. , 2020, , .		Ο
24	Dynamics of the femtosecond laser-triggered spark gap. Optics Express, 2020, 28, 24599.	3.4	11
25	Transient grating single-shot supercontinuum spectral interferometry (TG-SSSI). , 2020, , .		0
26	Ultra-Broadband UV to THz Coherent Radiation from Two-Color Mid-Infrared Interactions in Thin Gas Jets. , 2020, , .		0
27	Experimental Demonstration of Simplified Single-shot Supercontinuum Spectral Interferometry. , 2020, , .		0
28	Transverse beam shape of laser-driven electron bunches. , 2020, , .		0
29	LWIR filamentation arrested by avalanche ionization. , 2020, , .		Ο
30	Mechanisms of ionization and self-guiding in the mid- and long-wave infrared. , 2020, , .		0
31	Molecular Quantum Wakes for Clearing Fog. , 2020, , .		0
32	Acceleration of quasi mono-energetic electron bunches to ~15 MeV using mJ, few-cycle laser pulses. , 2020, , .		0
33	Angular momentum of spatiotemporal optical vortices in dispersive media. , 2020, , .		0
34	Acceleration of quasi mono-energetic electron bunches to ~15MeV using <3mJ energy few-cycle laser pulses. , 2020, , .		0
35	Full path single-shot imaging of femtosecond pulse collapse in air turbulence. Optics Letters, 2020, 45, 2518.	3.3	10
36	Self-waveguiding of relativistic laser pulses in neutral gas channels. Physical Review Research, 2020, 2, .	3.6	18

#	Article	IF	CITATIONS
37	Characterization of a 100 micrometer-scale cryogenically cooled gas jet for near-critical density laser-plasma experiments. Review of Scientific Instruments, 2019, 90, .	1.3	12
38	Indestructible plasma optics. Physics Today, 2019, 72, 70-71.	0.3	10
39	Remote detection of radioactive material using mid-IR laser–driven electron avalanche. Science Advances, 2019, 5, eaav6804.	10.3	24
40	Single Shot Axially Resolved Femtosecond Laser Filament Profiles. , 2019, , .		0
41	Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens. Physical Review Accelerators and Beams, 2019, 22, .	1.6	37
42	Detecting radiation in a standoff geometry with mid-IR laser breakdown. , 2019, , .		1
43	Direct Measurement of Linearly Imposed Spatiotemporal Optical Vortices (STOVs). , 2019, , .		6
44	Controlling femtosecond filament propagation using externally driven gas motion. Optics Letters, 2019, 44, 199.	3.3	7
45	Ultrashort infrared 25–11  μm pulses: spatiotemporal profiles and absolute nonlinear response of air constituents. Optics Letters, 2019, 44, 843.	3.3	26
46	Measurement of ultralow radiation-induced charge densities using picosecond mid-IR laser-induced breakdown. Optica, 2019, 6, 811.	9.3	13
47	Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica, 2019, 6, 1338.	9.3	47
48	Free-space propagation of spatiotemporal optical vortices. Optica, 2019, 6, 1547.	9.3	149
49	Measuring Ultralow Charge Densities In Gases With Picosecond Mid-IR Laser Breakdown. , 2019, , .		0
50	Acceleration of quasi-mono-energetic electron bunches to 5 MeV at 1 kHz with few-cycle laser pulses. , 2019, , .		0
51	Ultra-Broadband UV to Microwave Coherent Radiation from Mid-Infrared Interactions in Thin Gas Jets and Clusters. , 2019, , .		0
52	Bound-Electron Nonlinearity Beyond the Ionization Threshold. Physical Review Letters, 2018, 120, 183901.	7.8	21
53	Coherent ultra-broadband laser-assisted injection radiation from a laser plasma accelerator. Physical Review E, 2018, 98, .	2.1	3
54	Hydrodynamic optical-field-ionized plasma channels. Physical Review E, 2018, 97, 053203.	2.1	49

#	Article	IF	CITATIONS
55	Laser wakefield acceleration with mid-IR laser pulses. Optics Letters, 2018, 43, 1131.	3.3	52
56	Synchronized Microphone Array for Single-shot Axial Profiles of Femtosecond Filaments. , 2018, , .		0
57	Quasi-monoenergetic Electron Beams from Mid-IR Laser Wakefield Acceleration in the Bubble Regime. , 2018, , .		0
58	Coherent ultra-broadband wave-breaking radiation in a laser plasma accelerator. , 2018, , .		0
59	Nonlinear optical polarization response and plasma generation in noble gases: Comparison of metastable-electronic-state-approach models to experiments. Physical Review A, 2017, 96, .	2.5	12
60	MeV electron acceleration at 1  kHz with <10  mJ laser pulses. Optics Letters, 2017, 42, 215.	3.3	76
61	MeV electron acceleration at 1 kHz with <10 mJ laser pulses. , 2017, , .		1
62	Experiment-theory comparison and verification of metastable electronic state description of nonlinear optical response in atoms and molecules. , 2017, , .		0
63	Measurement of Kerr Coefficient in Large Bandgap Solids at Mid-IR Wavelengths. , 2017, , .		0
64	Laser wakefield acceleration with mid-IR laser pulses. , 2017, , .		0
65	Single-shot, Axially Resolved Measurements of Femtosecond Filament Energy Deposition over 10 Meter Scales. , 2017, , .		0
66	Spatiotemporal Characterization of Ultrashort Pulses from the near- to mid-IR. , 2017, , .		0
67	Temporal measurement of the wave-breaking flash in a laser plasma accelerator. , 2017, , .		0
68	Bound Electron Nonlinearity Beyond the Ionization Threshold. , 2017, , .		0
69	High power guiding and electron acceleration in pure N5+ plasma channels. AIP Conference Proceedings, 2016, , .	0.4	0
70	Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air. Applied Physics Letters, 2016, 108, .	3.3	61
71	Spatiotemporal Optical Vortices. Physical Review X, 2016, 6, .	8.9	97
72	Energy deposition of single femtosecond filaments in the atmosphere. Optics Letters, 2016, 41, 3908.	3.3	29

Howard M Milchberg

#	Article	IF	CITATIONS
73	Optimizing the time resolution of supercontinuum spectral interferometry. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1476.	2.1	21
74	Generation of axially modulated plasma waveguides using a spatial light modulator. Optics Letters, 2016, 41, 3427.	3.3	7
75	Two-photon vibrational excitation of air by long-wave infrared laser pulses. Physical Review A, 2016, 94, .	2.5	8
76	Absolute Measurements of the Electronic, Rotational, and Rovibrational Optical Nonlinearity in Gases. , 2016, , .		0
77	Plasma Sheet and Strong Terahertz Generation with Elliptically Shaped Two-Color Laser Pulses. , 2016, , . Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in < mml:math		1
78	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn></mml:mi </mml:msub> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">D<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review A,</mml:math 	2.5	22
79	2015, 92, . Multi-MeV Electron Acceleration by Subterawatt Laser Pulses. Physical Review Letters, 2015, 115, 194802.	7.8	83
80	Terahertz generation from cylindircally focused two-color laser pulses in air. , 2015, , .		0
81	Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Optics Letters, 2015, 40, 5794.	3.3	93
82	Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 094011.	1.5	27
83	Filamentation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 090301.	1.5	2
84	2014, 21, 100901.	1.9	25
85	Air waveguides generated by femtosecond filaments. , 2014, , .		0
86	Modulated Plasma Waveguides Generated by Intense Bessel Beams Patterned with a Spatial Light Modulator. , 2014, , .		0
87	Collection of remote optical signals by air waveguides. Optica, 2014, 1, 5.	9.3	33
88	Direct imaging of the acoustic waves generated by femtosecond filaments in air. Optics Letters, 2014, 39, 1290.	3.3	57
89	Optical mode structure of the air waveguide. Optics Letters, 2014, 39, 6312.	3.3	6
90	Quasi-Phase-Matched Laser Wakefield Acceleration. Physical Review Letters, 2014, 112, 134803.	7.8	20

#	Article	IF	CITATIONS
91	Laser wakefield acceleration of electrons with ionization injection in a pure N5+ plasma waveguide. Applied Physics Letters, 2014, 104, .	3.3	20
92	All-optical characterization of cryogenically cooled argon clusters in continuous gas jets. Applied Physics Letters, 2014, 105, .	3.3	14
93	Demonstration of Long-Lived High-Power Optical Waveguides in Air. Physical Review X, 2014, 4, .	8.9	74
94	Quantum Control of Molecular Gas Hydrodynamics. Physical Review Letters, 2014, 112, 143601.	7.8	43
95	High Power Guiding and Electron Acceleration in Pure N5+ Plasma Channels. , 2014, , .		0
96	Quantum Control of Molecular Gas Hydrodynamics. , 2014, , .		0
97	Two-dimensional Supercontinuum Spectral Interferometry for Measurement of Laser-induced Plasmas. , 2014, , .		0
98	Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems. New Journal of Physics, 2013, 15, 075002.	2.9	151
99	The effect of long timescale gas dynamics on femtosecond filamentation. Optics Express, 2013, 21, 4740.	3.4	110
100	Effect of two-beam coupling in strong-field optical pump-probe experiments. Physical Review A, 2013, 87, .	2.5	31
101	Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation. Applied Physics Letters, 2013, 102, .	3.3	34
102	Breakthroughs in Photonics 2012: Breakthroughs in Filamentation. IEEE Photonics Journal, 2013, 5, 0700405-0700405.	2.0	0
103	Optical beam dynamics in a gas repetitively heated by femtosecond filaments. Optics Express, 2013, 21, 28980.	3.4	31
104	Shock formation in supersonic cluster jets and its effect on axially modulated laser-produced plasma waveguides. Optics Express, 2013, 21, 15878.	3.4	11
105	Theory and simulation of quasi-phase matched acceleration of electrons in a corrugated plasma channel. , 2013, , .		0
106	Quasi-phasematched Laser Wakefield Acceleration In a Corrugated Plasma Channel. , 2013, , .		0
107	Long Timescale Gas Dynamics in Femtosecond Filamentation. , 2013, , .		0
108	Direct, absolute measurements of the high-intensity nonlinear refractive index in gases. , 2013, , .		0

Howard M Milchberg

#	Article	IF	CITATIONS
109	Quasi-phase-matched acceleration of electrons in a corrugated plasma channel. Physical Review Special Topics: Accelerators and Beams 2012, 15 Absolute measurement of the transient optical nonlinearity in N <mml:math< td=""><td>1.8</td><td>19</td></mml:math<>	1.8	19
110	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> , O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>, N<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>2.5</td><td>98</td></mml:mrow<></mml:msub></mml:math </mml:math 	2.5	98
111	Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere. Physical Review A, 2012, 86, .	2.5	26
112	Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 2012, 7, 472-478.	31.5	409
113	High Field Optical Nonlinearity and the Kramers-Kronig Relations. Physical Review Letters, 2012, 109, 113904.	7.8	58
114	Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments. Physical Review A, 2012, 86, .	2.5	29
115	Simulations of femtosecond atmospheric filaments enhanced by dual pulse molecular alignment. Physical Review A, 2012, 85, .	2.5	17
116	Ionization-Grating-Induced Nonlinear Phase Accumulation in Spectrally Resolved Transient Birefringence Measurements at 400Ânm. Physical Review Letters, 2012, 109, 065003.	7.8	24
117	Measurements of the High Field Optical Nonlinearity and Electron Density in Gases: Application to Filamentation Experiments. IEEE Journal of Quantum Electronics, 2012, 48, 760-767.	1.9	15
118	Effect of a plasma grating on pump–probe experiments near the ionization threshold in gases. Optics Letters, 2011, 36, 3822.	3.3	43
119	Third harmonic generation by a low intensity laser pulse in a corrugated discharge capillary. Applied Physics Letters, 2011, 99, 211501.	3.3	1
120	Temporal Compression of Ultrafast Optical Filaments by Molecular Quantum Wakes in Atmosphere. , 2011, , .		0
121	Hollow plasma channel for positron plasma wakefield acceleration. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	39
122	Optical Nonlinearity in Ar andN2near the Ionization Threshold. Physical Review Letters, 2011, 107, 103901.	7.8	83
123	Molecular quantum wakes in the hydrodynamic plasma waveguide in air. Physical Review A, 2010, 82, .	2.5	4
124	Direct Measurement of the Electron Density of Extended Femtosecond Laser Pulse-Induced Filaments. Physical Review Letters, 2010, 105, 215005.	7.8	131
125	Particle in cell analysis of a laser-cluster interaction including collision and ionization processes. Optics Express, 2010, 18, 2389.	3.4	18
126	Slow wave plasma structures for direct electron acceleration. New Journal of Physics, 2010, 12, 095011.	2.9	14

#	Article	IF	CITATIONS
127	Direct Acceleration of Electrons in a Corrugated Plasma Channel. , 2009, , .		0
128	Quantum molecular lensing of femtosecond laser optical/plasma filaments. Physics of Plasmas, 2009, 16, 056702.	1.9	12
129	Periodic index-modulated plasma waveguide. Optics Express, 2009, 17, 4263.	3.4	22
130	Axially Modulated Plasma Waveguides. , 2009, , .		0
131	Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry. Applied Physics Letters, 2009, 94, 211102.	3.3	52
132	Manipulation of an Optical/plasma Filament Propagating in Atmosphere Using Quantum Molecular Alignment Wakes. , 2009, , .		0
133	Trapping and Destruction of Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air. Physical Review Letters, 2008, 101, 205001.	7.8	117
134	Space- and time-resolved measurement of rotational wave packet revivals of linear gas molecules using single-shot supercontinuum spectral interferometry. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B122.	2.1	12
135	Ultrahigh-intensity optical slow-wave structure for direct laser electron acceleration. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B137.	2.1	6
136	Broadband terahertz lasing in aligned molecules. Optics Express, 2008, 16, 10557.	3.4	14
137	Pulse propagation and electron acceleration in a corrugated plasma channel. Physical Review E, 2008, 77, 036405.	2.1	32
138	Direct Acceleration of Electrons in a Corrugated Plasma Waveguide. Physical Review Letters, 2008, 100, 195001.	7.8	92
139	Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H <inf>2</inf> and D <inf>2</inf> . , 2008, , .		2
140	Effect of aligned nitrogen molecules on atmospheric propagation of ultrashort laser pulses. , 2008, , .		0
141	Single-Shot Time Resolved Measurement of Molecular Alignment in Laser-Irradiated Gases. , 2007, , .		0
142	Ultra-high Intensity Optical Slow Wave Structure and Applications. AIP Conference Proceedings, 2007, , .	0.4	0
143	Understanding the Interaction of an Intense Laser Pulse with Nanoparticles: Application to the Quantification of Single Particle Mass Spectrometry. Aerosol Science and Technology, 2007, 41, 818-827.	3.1	10
144	Ultrahigh-Intensity Optical Slow-Wave Structure. Physical Review Letters, 2007, 99, 035001.	7.8	108

#	Article	IF	CITATIONS
145	Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H_2, D_2, N_2, O_2, and N_2O. Optics Express, 2007, 15, 11341.	3.4	91
146	Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Physics of Plasmas, 2007, 14, 033107.	1.9	122
147	Single-shot time resolved measurement of molecular alignment in laser-irradiated gases. , 2007, , .		Ο
148	Observation of modulations in Lyman-αline profiles of multicharged ions in clusters irradiated by femtosecond laser pulses: Effect of a dynamic electric field. Physical Review A, 2006, 73, .	2.5	22
149	Clustered gases as a medium for efficient plasma waveguide generation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 647-661.	3.4	19
150	Corrugated Plasma Waveguides $\hat{a} \in \hat{~}$ Optical Slow Wave Structures. AIP Conference Proceedings, 2006, , .	0.4	1
151	Application of the Corrugated Plasma Waveguide to Direct Laser Acceleration. AIP Conference Proceedings, 2006, , .	0.4	3
152	Parametric instability in the formation of plasma waveguides. Physical Review E, 2006, 73, 036404.	2.1	8
153	X-ray spectroscopy of1cmplasma channels produced by self-guided pulse propagation in elongated cluster jets. Physical Review E, 2006, 73, 066403.	2.1	23
154	Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides. Physics of Plasmas, 2005, 12, 056712.	1.9	9
155	Effective coupling of ultraintense laser pulse to funnel-mouthed plasma waveguides. Physics of Plasmas, 2005, 12, 043105.	1.9	2
156	Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases. Physical Review Letters, 2005, 94, 205004.	7.8	48
157	Plasma waveguides efficiently generated by Bessel beams in elongated cluster gas jets. Physical Review E, 2005, 72, 036411.	2.1	25
158	Spectral redshifts in the intense laser-cluster interaction. Physical Review A, 2005, 71, .	2.5	24
159	Resonant heating of a cluster plasma by intense laser light. Physics of Plasmas, 2005, 12, 056703.	1.9	33
160	Propagation of intense short laser pulses in a gas of atomic clusters. Physical Review E, 2004, 70, 046410.	2.1	18
161	Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium. Physics of Plasmas, 2004, 11, 2882-2889.	1.9	15
162	Diagnostic of Laser-Plasmas: Single-shot Supercontinuum Spectral Interferometry. AIP Conference Proceedings, 2004, , .	0.4	3

#	Article	IF	CITATIONS
163	Resonant Heating of a Cluster Plasma by Intense Laser Light. Physical Review Letters, 2004, 92, 205003.	7.8	101
164	Time-Resolved Explosion of Intense-Laser-Heated Clusters. Physical Review Letters, 2003, 90, 023401.	7.8	75
165	Hydrodynamic time scales for intense laser-heated clusters. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 118.	2.1	25
166	Measurement of the average size and density of clusters in a gas jet. Applied Physics Letters, 2003, 83, 3210-3212.	3.3	83
167	Self-Focusing of Intense Laser Pulses in a Clustered Gas. Physical Review Letters, 2003, 90, 103402.	7.8	81
168	Resonant self-trapping of high intensity Bessel beams in underdense plasmas. Physical Review E, 2002, 65, 056408.	2.1	13
169	Single-shot supercontinuum spectral interferometry. Applied Physics Letters, 2002, 81, 4124-4126.	3.3	101
170	Characterization of a cryogenic, high-pressure gas jet operated in the droplet regime. Review of Scientific Instruments, 2002, 73, 468-475.	1.3	12
171	Measurement of the Superluminal Group Velocity of an Ultrashort Bessel Beam Pulse. Physical Review Letters, 2002, 88, 073901.	7.8	100
172	Plasma Waveguides: Addition of End Funnels and Generation in Clustered Gases. AIP Conference Proceedings, 2002, , .	0.4	9
173	Interaction of Intense Laser Pulses with Noble Gas Clusters and Droplets. AIP Conference Proceedings, 2002, , .	0.4	Ο
174	A pump–probe investigation of laser-droplet plasma dynamics. Applied Physics Letters, 2001, 79, 4100-4102.	3.3	19
175	Plasma hydrodynamics of the intense laser-cluster interaction. Physical Review E, 2001, 64, 056402.	2.1	180
176	Optical mode structure of the plasma waveguide. Physical Review E, 2000, 61, 1954-1965.	2.1	50
177	Time-evolution and guiding regimes of the laser-produced plasma waveguide. Physics of Plasmas, 2000, 7, 2192-2197.	1.9	7
178	X-ray and extreme ultraviolet emission induced by variable pulse-width irradiation of Ar and Kr clusters and droplets. Physical Review E, 2000, 62, R5931-R5934.	2.1	122
179	Tubular plasma generation with a high-power hollow Bessel beam. Physical Review E, 2000, 62, R7603-R7606.	2.1	46
180	Resonant Self-Trapping and Absorption of Intense Bessel Beams. Physical Review Letters, 2000, 84, 3085-3088.	7.8	53

#	Article	IF	CITATIONS
181	High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet. Physical Review E, 1999, 59, R3839-R3842.	2.1	47
182	High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet. , 1999, , .		2
183	Laser-driven implosion of a cylindrical plasma. Physical Review E, 1998, 57, 3417-3422.	2.1	11
184	Generation of a plasma waveguide in an elongated, high repetition rate gas jet. Applied Physics Letters, 1998, 73, 3064-3066.	3.3	13
185	Frequency Selective Tunnel Coupling to the Plasma Fiber. Physical Review Letters, 1998, 81, 357-360.	7.8	16
186	Plasma Waveguide: Density Development and High Intensity Guiding. , 1998, , 113-121.		0
187	Time- and Space-Resolved Density Evolution of the Plasma Waveguide. Physical Review Letters, 1997, 78, 2373-2376.	7.8	106
188	Guiding of intense femtosecond pulses in preformed plasma channels. Optics Letters, 1997, 22, 1787.	3.3	38
189	Development and applications of a plasma waveguide for intense laser pulses. Physics of Plasmas, 1996, 3, 2149-2155.	1.9	129
190	Mode control in a two-pulse-excited plasma waveguide. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 59.	2.1	17
191	High-Order Frequency Conversion in the Plasma Waveguide. Physical Review Letters, 1995, 75, 2494-2497.	7.8	158
192	Development of a plasma waveguide for high-intensity laser pulses. Physical Review E, 1995, 51, 2368-2389.	2.1	201
193	Mode properties of a plasma waveguide for intense laser pulses: erratum. Optics Letters, 1995, 20, 946.	3.3	1
194	Application of a plasma waveguide to soft-x-ray lasers. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 731.	2.1	72
195	Mode properties of a plasma waveguide for intense laser pulses. Optics Letters, 1994, 19, 1937.	3.3	49
196	Light pipe for high intensity laser pulses. Physical Review Letters, 1993, 71, 2409-2412.	7.8	459
197	Skin effect and reflectivity in strongly coupled plasmas. Physics of Fluids B, 1992, 4, 2423-2428.	1.7	21
198	Pulse compression in a self-filtering Nd:YAG regenerative amplifier. Optics Letters, 1992, 17, 37.	3.3	8

#	Article	IF	CITATIONS
199	Factors controlling the x-ray pulse emission from an intense femtosecond laser-heated solid. Physical Review Letters, 1991, 67, 2654-2657.	7.8	61
200	On high frequency electrical conductivity of strongly coupled plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 5043-5053.	1.5	10
201	Expansion-induced Doppler shifts from ultrashort-pulse laser-produced plasmas. Physical Review A, 1990, 41, 2211-2214.	2.5	32
202	Studies of hot dense plasmas produced by an intense subpicosecond laser. Physics of Fluids B, 1990, 2, 1395-1399.	1.7	31
203	Comment on â€~â€~High density plasmas produced by ultrafast laser pulses''. Physical Review Letters, 198 63, 338-338.	³⁹ 7.8	1
204	Light absorption in ultrashort scale length plasmas. Journal of the Optical Society of America B: Optical Physics, 1989, 6, 1351.	2.1	104
205	Resistivity of a Simple Metal from Room Temperature to106K. Physical Review Letters, 1988, 61, 2364-2367.	7.8	391