Howard M Milchberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7342632/publications.pdf

Version: 2024-02-01

205 papers 7,024 citations

50276 46 h-index ⁶⁴⁷⁹⁶ **79**

g-index

211 all docs

211 docs citations

times ranked

211

3576 citing authors

#	Article	IF	CITATIONS
1	Light pipe for high intensity laser pulses. Physical Review Letters, 1993, 71, 2409-2412.	7.8	459
2	Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 2012, 7, 472-478.	31.5	409
3	Resistivity of a Simple Metal from Room Temperature to 106K. Physical Review Letters, 1988, 61, 2364-2367.	7.8	391
4	Development of a plasma waveguide for high-intensity laser pulses. Physical Review E, 1995, 51, 2368-2389.	2.1	201
5	Plasma hydrodynamics of the intense laser-cluster interaction. Physical Review E, 2001, 64, 056402.	2.1	180
6	High-Order Frequency Conversion in the Plasma Waveguide. Physical Review Letters, 1995, 75, 2494-2497.	7.8	158
7	Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems. New Journal of Physics, 2013, 15, 075002.	2.9	151
8	Free-space propagation of spatiotemporal optical vortices. Optica, 2019, 6, 1547.	9.3	149
9	Direct Measurement of the Electron Density of Extended Femtosecond Laser Pulse-Induced Filaments. Physical Review Letters, 2010, 105, 215005.	7.8	131
10	Development and applications of a plasma waveguide for intense laser pulses. Physics of Plasmas, 1996, 3, 2149-2155.	1.9	129
11	X-ray and extreme ultraviolet emission induced by variable pulse-width irradiation of Ar and Kr clusters and droplets. Physical Review E, 2000, 62, R5931-R5934.	2.1	122
12	Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Physics of Plasmas, 2007, 14, 033107.	1.9	122
13	Trapping and Destruction of Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air. Physical Review Letters, 2008, 101, 205001.	7.8	117
14	The effect of long timescale gas dynamics on femtosecond filamentation. Optics Express, 2013, 21, 4740.	3.4	110
15	Ultrahigh-Intensity Optical Slow-Wave Structure. Physical Review Letters, 2007, 99, 035001.	7.8	108
16	Time- and Space-Resolved Density Evolution of the Plasma Waveguide. Physical Review Letters, 1997, 78, 2373-2376.	7.8	106
17	Light absorption in ultrashort scale length plasmas. Journal of the Optical Society of America B: Optical Physics, 1989, 6, 1351.	2.1	104
18	Single-shot supercontinuum spectral interferometry. Applied Physics Letters, 2002, 81, 4124-4126.	3.3	101

#	Article	IF	CITATIONS
19	Resonant Heating of a Cluster Plasma by Intense Laser Light. Physical Review Letters, 2004, 92, 205003.	7.8	101
20	Measurement of the Superluminal Group Velocity of an Ultrashort Bessel Beam Pulse. Physical Review Letters, 2002, 88, 073901.	7.8	100
21	xmins:mmi="http://www.w3.org/1998/Math/Math/ML" display="inline"> <mmi:msub><mmi:mrow< td=""><td>2.5</td><td>98</td></mmi:mrow<></mmi:msub>	2.5	98
22	Spatiotemporal Optical Vortices. Physical Review X, 2016, 6, .	8.9	97
23	Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Optics Letters, 2015, 40, 5794.	3.3	93
24	Direct Acceleration of Electrons in a Corrugated Plasma Waveguide. Physical Review Letters, 2008, 100, 195001.	7.8	92
25	Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H_2, D_2, N_2, O_2, and N_2O. Optics Express, 2007, 15, 11341.	3.4	91
26	Measurement of the average size and density of clusters in a gas jet. Applied Physics Letters, 2003, 83, 3210-3212.	3.3	83
27	Optical Nonlinearity in Ar and N2 near the Ionization Threshold. Physical Review Letters, 2011, 107, 103901.	7.8	83
28	Multi-MeV Electron Acceleration by Subterawatt Laser Pulses. Physical Review Letters, 2015, 115, 194802.	7.8	83
29	Self-Focusing of Intense Laser Pulses in a Clustered Gas. Physical Review Letters, 2003, 90, 103402.	7.8	81
30	MeV electron acceleration at 1  kHz with <10  mJ laser pulses. Optics Letters, 2017, 42, 215.	3.3	76
31	Time-Resolved Explosion of Intense-Laser-Heated Clusters. Physical Review Letters, 2003, 90, 023401.	7.8	75
32	Demonstration of Long-Lived High-Power Optical Waveguides in Air. Physical Review X, 2014, 4, .	8.9	74
33	Application of a plasma waveguide to soft-x-ray lasers. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 731.	2.1	72
34	Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica, 2021, 8, 594.	9.3	64
35	Factors controlling the x-ray pulse emission from an intense femtosecond laser-heated solid. Physical Review Letters, 1991, 67, 2654-2657.	7.8	61
36	Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air. Applied Physics Letters, 2016, 108, .	3.3	61

#	Article	IF	CITATIONS
37	High Field Optical Nonlinearity and the Kramers-Kronig Relations. Physical Review Letters, 2012, 109, 113904.	7.8	58
38	Direct imaging of the acoustic waves generated by femtosecond filaments in air. Optics Letters, 2014, 39, 1290.	3.3	57
39	Mode Structure and Orbital Angular Momentum of Spatiotemporal Optical Vortex Pulses. Physical Review Letters, 2021, 127, 193901.	7.8	55
40	Resonant Self-Trapping and Absorption of Intense Bessel Beams. Physical Review Letters, 2000, 84, 3085-3088.	7.8	53
41	Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry. Applied Physics Letters, 2009, 94, 211102.	3.3	52
42	Laser wakefield acceleration with mid-IR laser pulses. Optics Letters, 2018, 43, 1131.	3.3	52
43	Optical mode structure of the plasma waveguide. Physical Review E, 2000, 61, 1954-1965.	2.1	50
44	Mode properties of a plasma waveguide for intense laser pulses. Optics Letters, 1994, 19, 1937.	3.3	49
45	Hydrodynamic optical-field-ionized plasma channels. Physical Review E, 2018, 97, 053203.	2.1	49
46	Guiding of Intense Laser Pulses in Plasma Waveguides Produced from Efficient, Femtosecond End-Pumped Heating of Clustered Gases. Physical Review Letters, 2005, 94, 205004.	7.8	48
47	Optical Guiding in Meter-Scale Plasma Waveguides. Physical Review Letters, 2020, 125, 074801.	7.8	48
48	High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet. Physical Review E, 1999, 59, R3839-R3842.	2.1	47
49	Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica, 2019, 6, 1338.	9.3	47
50	Tubular plasma generation with a high-power hollow Bessel beam. Physical Review E, 2000, 62, R7603-R7606.	2.1	46
51	Effect of a plasma grating on pump–probe experiments near the ionization threshold in gases. Optics Letters, 2011, 36, 3822.	3.3	43
52	Quantum Control of Molecular Gas Hydrodynamics. Physical Review Letters, 2014, 112, 143601.	7.8	43
53	Hollow plasma channel for positron plasma wakefield acceleration. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	39
54	Guiding of intense femtosecond pulses in preformed plasma channels. Optics Letters, 1997, 22, 1787.	3.3	38

#	Article	IF	CITATIONS
55	Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens. Physical Review Accelerators and Beams, 2019, 22, .	1.6	37
56	Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation. Applied Physics Letters, $2013,102,.$	3.3	34
57	Resonant heating of a cluster plasma by intense laser light. Physics of Plasmas, 2005, 12, 056703.	1.9	33
58	Collection of remote optical signals by air waveguides. Optica, 2014, 1, 5.	9.3	33
59	Expansion-induced Doppler shifts from ultrashort-pulse laser-produced plasmas. Physical Review A, 1990, 41, 2211-2214.	2.5	32
60	Pulse propagation and electron acceleration in a corrugated plasma channel. Physical Review E, 2008, 77, 036405.	2.1	32
61	Effect of two-beam coupling in strong-field optical pump-probe experiments. Physical Review A, 2013, 87, .	2.5	31
62	Optical beam dynamics in a gas repetitively heated by femtosecond filaments. Optics Express, 2013, 21, 28980.	3.4	31
63	Studies of hot dense plasmas produced by an intense subpicosecond laser. Physics of Fluids B, 1990, 2, 1395-1399.	1.7	31
64	Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments. Physical Review A, 2012, 86, .	2.5	29
65	Energy deposition of single femtosecond filaments in the atmosphere. Optics Letters, 2016, 41, 3908.	3.3	29
66	Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 094011.	1.5	27
67	Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere. Physical Review A, 2012, 86, .	2.5	26
68	Ultrashort infrared 25–11  μm pulses: spatiotemporal profiles and absolute nonlinear response of air constituents. Optics Letters, 2019, 44, 843.	3.3	26
69	Hydrodynamic time scales for intense laser-heated clusters. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 118.	2.1	25
70	Plasma waveguides efficiently generated by Bessel beams in elongated cluster gas jets. Physical Review E, 2005, 72, 036411.	2.1	25
71	2014, 21, 100901.	1.9	25
72	Spectral redshifts in the intense laser-cluster interaction. Physical Review A, 2005, 71, .	2.5	24

#	Article	IF	CITATIONS
73	Ionization-Grating-Induced Nonlinear Phase Accumulation in Spectrally Resolved Transient Birefringence Measurements at 400Ânm. Physical Review Letters, 2012, 109, 065003.	7.8	24
74	Remote detection of radioactive material using mid-IR laser–driven electron avalanche. Science Advances, 2019, 5, eaav6804.	10.3	24
75	X-ray spectroscopy of 1 cmplasma channels produced by self-guided pulse propagation in elongated cluster jets. Physical Review E, 2006, 73, 066403.	2.1	23
76	Observation of modulations in Lyman- \hat{l} ±line profiles of multicharged ions in clusters irradiated by femtosecond laser pulses: Effect of a dynamic electric field. Physical Review A, 2006, 73, .	2.5	22
77	Periodic index-modulated plasma waveguide. Optics Express, 2009, 17, 4263. Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in <mml:math< td=""><td>3.4</td><td>22</td></mml:math<>	3.4	22
78	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">D</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review A,	2.5	22
79	2015, 92, . Skin effect and reflectivity in strongly coupled plasmas. Physics of Fluids B, 1992, 4, 2423-2428.	1.7	21
80	Optimizing the time resolution of supercontinuum spectral interferometry. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1476.	2.1	21
81	Bound-Electron Nonlinearity Beyond the Ionization Threshold. Physical Review Letters, 2018, 120, 183901.	7.8	21
82	Laser-Accelerated, Low-Divergence 15-MeV Quasimonoenergetic Electron Bunches at $1 \text{\^A} \text{kHz}$. Physical Review X, 2021, 11, .	8.9	21
83	Quasi-Phase-Matched Laser Wakefield Acceleration. Physical Review Letters, 2014, 112, 134803.	7.8	20
84	Laser wakefield acceleration of electrons with ionization injection in a pure N5+ plasma waveguide. Applied Physics Letters, $2014, 104, .$	3.3	20
85	A pump–probe investigation of laser-droplet plasma dynamics. Applied Physics Letters, 2001, 79, 4100-4102.	3.3	19
86	Clustered gases as a medium for efficient plasma waveguide generation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 647-661.	3.4	19
87	Quasi-phase-matched acceleration of electrons in a corrugated plasma channel. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	19
88	Propagation of intense short laser pulses in a gas of atomic clusters. Physical Review E, 2004, 70, 046410.	2.1	18
89	Particle in cell analysis of a laser-cluster interaction including collision and ionization processes. Optics Express, 2010, 18, 2389.	3.4	18
90	Guiding of high-intensity laser pulses in 100 -mm-long hydrodynamic optical-field-ionized plasma channels. Physical Review Accelerators and Beams, $2020, 23, \ldots$	1.6	18

#	Article	IF	CITATIONS
91	Self-waveguiding of relativistic laser pulses in neutral gas channels. Physical Review Research, 2020, 2, .	3.6	18
92	Mode control in a two-pulse-excited plasma waveguide. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 59.	2.1	17
93	Simulations of femtosecond atmospheric filaments enhanced by dual pulse molecular alignment. Physical Review A, 2012, 85, .	2.5	17
94	Absolute Measurement of Laser Ionization Yield in Atmospheric Pressure Range Gases over 14 Decades. Physical Review Letters, 2020, 124, 013201.	7.8	17
95	Frequency Selective Tunnel Coupling to the Plasma Fiber. Physical Review Letters, 1998, 81, 357-360.	7.8	16
96	Gases of exploding laser-heated cluster nanoplasmas as a nonlinear optical medium. Physics of Plasmas, 2004, 11, 2882-2889.	1.9	15
97	Measurements of the High Field Optical Nonlinearity and Electron Density in Gases: Application to Filamentation Experiments. IEEE Journal of Quantum Electronics, 2012, 48, 760-767.	1.9	15
98	Broadband terahertz lasing in aligned molecules. Optics Express, 2008, 16, 10557.	3.4	14
99	Slow wave plasma structures for direct electron acceleration. New Journal of Physics, 2010, 12, 095011.	2.9	14
100	All-optical characterization of cryogenically cooled argon clusters in continuous gas jets. Applied Physics Letters, 2014, 105, .	3.3	14
101	Generation of a plasma waveguide in an elongated, high repetition rate gas jet. Applied Physics Letters, 1998, 73, 3064-3066.	3.3	13
102	Resonant self-trapping of high intensity Bessel beams in underdense plasmas. Physical Review E, 2002, 65, 056408.	2.1	13
103	Self-Guiding of Long-Wave Infrared Laser Pulses Mediated by Avalanche Ionization. Physical Review Letters, 2020, 125, 133201.	7.8	13
104	Transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI). Optics Letters, 2021, 46, 1013.	3.3	13
105	Measurement of ultralow radiation-induced charge densities using picosecond mid-IR laser-induced breakdown. Optica, 2019, 6, 811.	9.3	13
106	Characterization of a cryogenic, high-pressure gas jet operated in the droplet regime. Review of Scientific Instruments, 2002, 73, 468-475.	1.3	12
107	Space- and time-resolved measurement of rotational wave packet revivals of linear gas molecules using single-shot supercontinuum spectral interferometry. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B122.	2.1	12
108	Quantum molecular lensing of femtosecond laser optical/plasma filaments. Physics of Plasmas, 2009, 16, 056702.	1.9	12

#	Article	IF	CITATIONS
109	Nonlinear optical polarization response and plasma generation in noble gases: Comparison of metastable-electronic-state-approach models to experiments. Physical Review A, 2017, 96, .	2.5	12
110	Characterization of a 100 micrometer-scale cryogenically cooled gas jet for near-critical density laser-plasma experiments. Review of Scientific Instruments, 2019, 90, .	1.3	12
111	Molecular quantum wakes for clearing fog. Optics Express, 2020, 28, 11463.	3.4	12
112	Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Optics Letters, 2021, 46, 5449.	3.3	12
113	Laser-driven implosion of a cylindrical plasma. Physical Review E, 1998, 57, 3417-3422.	2.1	11
114	Shock formation in supersonic cluster jets and its effect on axially modulated laser-produced plasma waveguides. Optics Express, 2013, 21, 15878.	3.4	11
115	Dynamics of the femtosecond laser-triggered spark gap. Optics Express, 2020, 28, 24599.	3.4	11
116	On high frequency electrical conductivity of strongly coupled plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 5043-5053.	1.5	10
117	Understanding the Interaction of an Intense Laser Pulse with Nanoparticles: Application to the Quantification of Single Particle Mass Spectrometry. Aerosol Science and Technology, 2007, 41, 818-827.	3.1	10
118	Indestructible plasma optics. Physics Today, 2019, 72, 70-71.	0.3	10
119	Full path single-shot imaging of femtosecond pulse collapse in air turbulence. Optics Letters, 2020, 45, 2518.	3.3	10
120	Plasma Waveguides: Addition of End Funnels and Generation in Clustered Gases. AIP Conference Proceedings, 2002, , .	0.4	9
121	Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides. Physics of Plasmas, 2005, 12, 056712.	1.9	9
122	Pulse compression in a self-filtering Nd:YAG regenerative amplifier. Optics Letters, 1992, 17, 37.	3.3	8
123	Parametric instability in the formation of plasma waveguides. Physical Review E, 2006, 73, 036404.	2.1	8
124	Two-photon vibrational excitation of air by long-wave infrared laser pulses. Physical Review A, 2016, 94, .	2.5	8
125	Time-evolution and guiding regimes of the laser-produced plasma waveguide. Physics of Plasmas, 2000, 7, 2192-2197.	1.9	7
126	Generation of axially modulated plasma waveguides using a spatial light modulator. Optics Letters, 2016, 41, 3427.	3.3	7

#	Article	IF	Citations
127	Ultrabroadband microwave radiation from near- and mid-infrared laser-produced plasmas in air. Physical Review A, 2021, 104, .	2.5	7
128	Controlling femtosecond filament propagation using externally driven gas motion. Optics Letters, 2019, 44, 199.	3.3	7
129	Ultrahigh-intensity optical slow-wave structure for direct laser electron acceleration. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B137.	2.1	6
130	Optical mode structure of the air waveguide. Optics Letters, 2014, 39, 6312.	3.3	6
131	Direct Measurement of Linearly Imposed Spatiotemporal Optical Vortices (STOVs)., 2019,,.		6
132	Phase front retrieval and correction of Bessel beams. Optics Express, 2022, 30, 11360.	3.4	6
133	Meter-scale plasma waveguides for multi-GeV laser wakefield acceleration. Physics of Plasmas, 2022, 29, 073101.	1.9	6
134	Molecular quantum wakes in the hydrodynamic plasma waveguide in air. Physical Review A, 2010, 82, .	2.5	4
135	Diagnostic of Laser-Plasmas: Single-shot Supercontinuum Spectral Interferometry. AIP Conference Proceedings, 2004, , .	0.4	3
136	Application of the Corrugated Plasma Waveguide to Direct Laser Acceleration. AIP Conference Proceedings, 2006, , .	0.4	3
137	Coherent ultra-broadband laser-assisted injection radiation from a laser plasma accelerator. Physical Review E, 2018, 98, .	2.1	3
138	High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet., 1999,,.		2
139	Effective coupling of ultraintense laser pulse to funnel-mouthed plasma waveguides. Physics of Plasmas, 2005, 12, 043105.	1.9	2
140	Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H <inf> 2</inf> and D <inf> 2</inf> . , 2008, , .		2
141	Filamentation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 090301.	1.5	2
142	Simplified single-shot supercontinuum spectral interferometry. Optics Express, 2020, 28, 11023.	3.4	2
143	Nonlinearity and ionization in Xe: experiment-based calibration of a numerical model. Optics Letters, 2020, 45, 5780.	3.3	2
144	Comment on â€~â€~High density plasmas produced by ultrafast laser pulses''. Physical Review Letters, 19 63, 338-338.	89. 7.8	1

#	Article	IF	Citations
145	Mode properties of a plasma waveguide for intense laser pulses: erratum. Optics Letters, 1995, 20, 946.	3.3	1
146	Corrugated Plasma Waveguides â€" Optical Slow Wave Structures. AIP Conference Proceedings, 2006, , .	0.4	1
147	Third harmonic generation by a low intensity laser pulse in a corrugated discharge capillary. Applied Physics Letters, 2011, 99, 211501.	3.3	1
148	Detecting radiation in a standoff geometry with mid-IR laser breakdown. , 2019, , .		1
149	MeV electron acceleration at 1 kHz with <10 mJ laser pulses. , 2017, , .		1
150	Plasma Sheet and Strong Terahertz Generation with Elliptically Shaped Two-Color Laser Pulses. , 2016, , .		1
151	Second Harmonic Generation of Spatiotemporal Optical Vortices and Conservation of Orbital Angular Momentum., 2021, , .		1
152	Interaction of Intense Laser Pulses with Noble Gas Clusters and Droplets. AIP Conference Proceedings, 2002, , .	0.4	0
153	Single-Shot Time Resolved Measurement of Molecular Alignment in Laser-Irradiated Gases. , 2007, , .		0
154	Ultra-high Intensity Optical Slow Wave Structure and Applications. AIP Conference Proceedings, 2007,	0.4	0
155	Single-shot time resolved measurement of molecular alignment in laser-irradiated gases. , 2007, , .		0
156	Effect of aligned nitrogen molecules on atmospheric propagation of ultrashort laser pulses. , 2008, , .		0
157	Direct Acceleration of Electrons in a Corrugated Plasma Channel. , 2009, , .		0
158	Axially Modulated Plasma Waveguides. , 2009, , .		0
159	Temporal Compression of Ultrafast Optical Filaments by Molecular Quantum Wakes in Atmosphere. , 2011, , .		0
160	Breakthroughs in Photonics 2012: Breakthroughs in Filamentation. IEEE Photonics Journal, 2013, 5, 0700405-0700405.	2.0	0
161	Theory and simulation of quasi-phase matched acceleration of electrons in a corrugated plasma channel. , 2013, , .		0
162	Air waveguides generated by femtosecond filaments. , 2014, , .		0

#	Article	IF	CITATIONS
163	Modulated Plasma Waveguides Generated by Intense Bessel Beams Patterned with a Spatial Light Modulator. , 2014 , , .		O
164	Terahertz generation from cylindircally focused two-color laser pulses in air., 2015,,.		0
165	High power guiding and electron acceleration in pure N5+ plasma channels. AIP Conference Proceedings, 2016, , .	0.4	0
166	Single Shot Axially Resolved Femtosecond Laser Filament Profiles. , 2019, , .		0
167	Transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI): publisher's note. Optics Letters, 2021, 46, 1433.	3.3	0
168	Transient Grating Single-shot Supercontinuum Spectral Interferometry (TG-SSSI)., 2021,,.		0
169	Manipulation of an Optical/plasma Filament Propagating in Atmosphere Using Quantum Molecular Alignment Wakes., 2009,,.		0
170	Quasi-phasematched Laser Wakefield Acceleration In a Corrugated Plasma Channel., 2013,,.		0
171	Long Timescale Gas Dynamics in Femtosecond Filamentation. , 2013, , .		0
172	Direct, absolute measurements of the high-intensity nonlinear refractive index in gases. , 2013, , .		0
173	High Power Guiding and Electron Acceleration in Pure N5+ Plasma Channels. , 2014, , .		0
174	Quantum Control of Molecular Gas Hydrodynamics. , 2014, , .		0
175	Two-dimensional Supercontinuum Spectral Interferometry for Measurement of Laser-induced Plasmas. , 2014, , .		0
176	Plasma Waveguide: Density Development and High Intensity Guiding., 1998,, 113-121.		0
177	Absolute Measurements of the Electronic, Rotational, and Rovibrational Optical Nonlinearity in Gases. , 2016, , .		0
178	Experiment-theory comparison and verification of metastable electronic state description of nonlinear optical response in atoms and molecules. , 2017 , , .		0
179	Measurement of Kerr Coefficient in Large Bandgap Solids at Mid-IR Wavelengths. , 2017, , .		0
180	Laser wakefield acceleration with mid-IR laser pulses. , 2017, , .		0

#	Article	IF	CITATIONS
181	Single-shot, Axially Resolved Measurements of Femtosecond Filament Energy Deposition over 10 Meter Scales. , 2017, , .		0
182	Spatiotemporal Characterization of Ultrashort Pulses from the near- to mid-IR. , 2017, , .		0
183	Temporal measurement of the wave-breaking flash in a laser plasma accelerator., 2017,,.		O
184	Bound Electron Nonlinearity Beyond the Ionization Threshold. , 2017, , .		0
185	Synchronized Microphone Array for Single-shot Axial Profiles of Femtosecond Filaments. , 2018, , .		0
186	Quasi-monoenergetic Electron Beams from Mid-IR Laser Wakefield Acceleration in the Bubble Regime. , 2018, , .		0
187	Coherent ultra-broadband wave-breaking radiation in a laser plasma accelerator. , 2018, , .		O
188	Measuring Ultralow Charge Densities In Gases With Picosecond Mid-IR Laser Breakdown. , 2019, , .		0
189	Acceleration of quasi-mono-energetic electron bunches to 5 MeV at 1 kHz with few-cycle laser pulses. , 2019, , .		O
190	Ultra-Broadband UV to Microwave Coherent Radiation from Mid-Infrared Interactions in Thin Gas Jets and Clusters. , 2019, , .		0
191	Efficient terahertz and Brunei harmonic generation from air plasma with femtosecond two-color mid-infrared lasers. , 2020, , .		O
192	Transient grating single-shot supercontinuum spectral interferometry (TG-SSSI). , 2020, , .		0
193	Ultra-Broadband UV to THz Coherent Radiation from Two-Color Mid-Infrared Interactions in Thin Gas Jets. , 2020, , .		O
194	Experimental Demonstration of Simplified Single-shot Supercontinuum Spectral Interferometry. , 2020, , .		0
195	Transverse beam shape of laser-driven electron bunches. , 2020, , .		O
196	LWIR filamentation arrested by avalanche ionization. , 2020, , .		0
197	Mechanisms of ionization and self-guiding in the mid- and long-wave infrared. , 2020, , .		O
198	Molecular Quantum Wakes for Clearing Fog. , 2020, , .		0

#	Article	IF	CITATIONS
199	Acceleration of quasi mono-energetic electron bunches to $\sim\!15$ MeV using mJ, few-cycle laser pulses. , 2020, , .		0
200	Angular momentum of spatiotemporal optical vortices in dispersive media., 2020,,.		0
201	Acceleration of quasi mono-energetic electron bunches to $\sim\!15$ MeV using $<\!3$ mJ energy few-cycle laser pulses. , 2020, , .		0
202	Second harmonic generation of spatiotemporal optical vortices (STOVs) and conservation of orbital angular momentum. , $2021, , .$		0
203	Mode structure and orbital angular momentum of spatio-temporal optical vortex (STOV) pulses. , 2021, , .		0
204	Applications of intense mid-infrared laser-matter interactions. , 2021, , .		0
205	Extreme sensitivity charge detection. Physics Today, 2022, 75, 62-63.	0.3	0