Patricia K Quinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7342201/publications.pdf

Version: 2024-02-01

217 papers 26,834 citations

81
h-index

7518 151 g-index

247 all docs

 $\begin{array}{c} 247 \\ \text{docs citations} \end{array}$

times ranked

247

14186 citing authors

#	Article	IF	CITATIONS
1	Ammonia, the dominant base in the remote marine troposphere: a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 39, 413.	1.6	16
2	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 290.	1.6	40
3	Aerosol physical properties and processes in the lower marine boundary layer: a comparison of shipboard sub-micron data from ACE-1 and ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 258.	1.6	66
4	Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 348.	1.6	16
5	Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 484.	1.6	20
6	Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 375.	1.6	16
7	Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 228.	1.6	28
8	A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 239.	1.6	74
9	Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 401.	1.6	21
10	Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104496119.	7.1	11
11	Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chemistry and Physics, 2022, 22, 3067-3096.	4.9	40
12	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	4.9	4
13	Characterization of Sea Surface Microlayer and Marine Aerosol Organic Composition Using STXM-NEXAFS Microscopy and FTIR Spectroscopy. ACS Earth and Space Chemistry, 2022, 6, 1899-1913.	2.7	5
14	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	4.9	15
15	Measurements from the RV & Description of the RV & Description of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth System Science Data, 2021, 13, 1759-1790.	9.9	28
16	EUREC ⁴ A. Earth System Science Data, 2021, 13, 4067-4119.	9.9	88
17	Seasonal Differences in Submicron Marine Aerosol Particle Organic Composition in the North Atlantic. Frontiers in Marine Science, 2021, 8, .	2.5	9
18	From Sugar to Flowers: A Transition of Shallow Cumulus Organization During ATOMIC. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002619.	3.8	19

#	Article	IF	CITATIONS
19	Variability in Marine Plankton Ecosystems Are Not Observed in Freshly Emitted Sea Spray Aerosol Over the North Atlantic Ocean. Geophysical Research Letters, 2020, 47, e2019GL085938.	4.0	30
20	Longâ€Term Trends for Marine Sulfur Aerosol in the Alaskan Arctic and Relationships With Temperature. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033225.	3.3	13
21	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	3.3	36
22	Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030913.	3.3	30
23	Arctic Aerosols. Springer Polar Sciences, 2020, , 209-329.	0.1	4
24	AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bulletin of the American Meteorological Society, 2020, 101, E1069-E1091.	3.3	46
25	North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: polysaccharides, recalcitrant material, and secondary organics. Atmospheric Chemistry and Physics, 2020, 20, 16007-16022.	4.9	9
26	Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20309-20314.	7.1	43
27	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	2.5	111
28	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	4.0	80
29	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	3.3	103
30	Nitrous acid formation in a snow-free wintertime polluted rural area. Atmospheric Chemistry and Physics, 2018, 18, 1977-1996.	4.9	22
31	Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmospheric Chemistry and Physics, 2018, 18, 10615-10643.	4.9	64
32	A practical set of miniaturized instruments for vertical profiling of aerosol physical properties. Aerosol Science and Technology, 2017, 51, 715-723.	3.1	16
33	Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol. Atmospheric Environment, 2017, 154, 331-347.	4.1	81
34	Evaluation of groundâ€based black carbon measurements by filterâ€based photometers at two Arctic sites. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3544-3572.	3.3	51
35	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	3.3	52
36	Molecular distributions and isotopic compositions of organic aerosols over the western North Atlantic: Dicarboxylic acids, related compounds, sugars, and secondary organic aerosol tracers. Organic Geochemistry, 2017, 113, 229-238.	1.8	32

#	Article	IF	Citations
37	Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nature Geoscience, 2017, 10, 674-679.	12.9	166
38	Factors That Modulate Properties of Primary Marine Aerosol Generated From Ambient Seawater on Ships at Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,961.	3.3	22
39	The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer. Frontiers in Marine Science, 2017, 4, .	2.5	137
40	Causes of variability in light absorption by particles in snow at sites in Idaho and Utah. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4751-4768.	3.3	34
41	Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9208-9219.	3.3	51
42	Coupled oceanâ€atmosphere loss of marine refractory dissolved organic carbon. Geophysical Research Letters, 2016, 43, 2765-2772.	4.0	35
43	The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA. Atmospheric Chemistry and Physics, 2016, 16, 13837-13851.	4.9	7
44	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 2016, 16, 573-583.	4.9	24
45	Characterization of black carbonâ€containing particles from soot particle aerosol mass spectrometer measurements on the R/V <i>Atlantis</i> during CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2575-2593.	3.3	47
46	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.	4.9	57
47	Peroxynitric acid (HO _{NO₂) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 8101-8114.}	4.9	33
48	Particulate organic nitrates observed in an oil and natural gas production region during wintertime. Atmospheric Chemistry and Physics, 2015, 15, 9313-9325.	4.9	14
49	Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmospheric Chemistry and Physics, 2015, 15, 9413-9433.	4.9	145
50	Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. Atmospheric Chemistry and Physics, 2015, 15, 5727-5741.	4.9	33
51	Surface ocean-lower atmosphere study: Scientific synthesis and contribution to Earth system science. Anthropocene, 2015, 12, 54-68.	3.3	13
52	The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol. ACS Central Science, 2015, 1, 132-141.	11.3	64
53	Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chemical Reviews, 2015, 115, 4383-4399.	47.7	289
54	Light-enhanced primary marine aerosol production from biologically productive seawater. Geophysical Research Letters, 2014, 41, 2661-2670.	4.0	48

#	Article	IF	CITATIONS
55	Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nature Geoscience, 2014, 7, 228-232.	12.9	223
56	Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer. Atmospheric Measurement Techniques, 2014, 7, 3399-3412.	3.1	25
57	Arctic Air Pollution: New Insights from POLARCAT-IPY. Bulletin of the American Meteorological Society, 2014, 95, 1873-1895.	3.3	107
58	A Measurement of Total Reactive Nitrogen, NO _{<i>y</i>} , together with NO ₂ , NO, and O ₃ via Cavity Ring-down Spectroscopy. Environmental Science & Environmental Science	10.0	75
59	Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles. Aerosol Science and Technology, 2014, 48, v-x.	3.1	25
60	Observations of gas phase hydrochloric acid in the polluted marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6897-6915.	3.3	44
61	Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8384-8399.	3.3	35
62	Sources and composition of submicron organic mass in marine aerosol particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,977.	3.3	106
63	Black carbon emissions from in-use ships: a California regional assessment. Atmospheric Chemistry and Physics, 2014, 14, 1881-1896.	4.9	45
64	A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmospheric Chemistry and Physics, 2014, 14, 1277-1297.	4.9	192
65	A case study into the measurement of ship emissions from plume intercepts of the NOAA ship <i>Miller Freeman</i> . Atmospheric Chemistry and Physics, 2014, 14, 1337-1352.	4.9	58
66	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	4.9	240
67	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	3.3	199
68	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	3.3	4,319
69	Regional signatures in the organic composition of marine aerosol particles. , 2013, , .		1
70	Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmospheric Measurement Techniques, 2013, 6, 2115-2120.	3.1	79
71	Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science, 2013, 339, 393-393.	12.6	35
72	Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,282.	3.3	21

#	Article	IF	CITATIONS
73	Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Maddenâ€Julian Oscillation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5736-5749.	3.3	22
74	The impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V <i>Atlantis</i> during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5003-5017.	3 . 3	33
75	Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,567.	3.3	33
76	Evolving research directions in Surface Ocean - Lower Atmosphere (SOLAS) science. Environmental Chemistry, $2013,10,1.$	1.5	40
77	Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network. Atmospheric Measurement Techniques, 2012, 5, 377-388.	3.1	30
78	Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science, 2012, 337, 1078-1081.	12.6	618
79	Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere. Journal of Geophysical Research, 2012, 117, .	3.3	85
80	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
81	Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and Air Quality. Environmental Science & Eamp; Technology, 2011, 45, 9052-9060.	10.0	115
82	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103
83	Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. Journal of Geophysical Research, 2011, 116, .	3.3	62
84	The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 2011, 480, 51-56.	27.8	532
85	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 2011, 11, 2423-2453.	4.9	259
86	Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 2011, 11, 3137-3157.	4.9	503
87	Atmospheric sulfur cycling in the southeastern Pacific $\hat{a} \in \text{``longitudinal distribution, vertical profile,}$ and diel variability observed during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5079-5097.	4.9	50
88	Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data. Atmospheric Pollution Research, 2011, 2, 283-299.	3.8	28
89	Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring. Atmospheric Environment, 2011, 45, 7301-7318.	4.1	206
90	Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 583-597.	3.1	152

#	Article	IF	Citations
91	Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties. Atmospheric Chemistry and Physics, 2010, 10, 51-61.	4.9	19
92	CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmospheric Chemistry and Physics, 2010, 10, 4795-4807.	4.9	124
93	Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics, 2010, 10, 669-693.	4.9	218
94	Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics, 2010, 10, 9351-9368.	4.9	169
95	Modeling heterogeneous ClNO2 formation, chloride availability, and chlorine cycling in Southeast Texas. Atmospheric Environment, 2010, 44, 5476-5488.	4.1	32
96	A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 2010, 464, 271-274.	27.8	562
97	Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6652-6657.	7.1	322
98	Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALSâ€REx 2008. Journal of Geophysical Research, 2010, 115, .	3.3	184
99	Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter. Geophysical Research Letters, 2010, 37, .	4.0	70
100	Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS Instrument. Aerosol Science and Technology, 2009, 43, 486-501.	3.1	34
101	Organic aerosol characterization by complementary measurements of chemical bonds and molecular fragments. Atmospheric Environment, 2009, 43, 6100-6105.	4.1	73
102	Source characterization from ambient measurements of aerosol optical properties. Geophysical Research Letters, 2009, 36, .	4.0	11
103	Direct observations of N ₂ O ₅ reactivity on ambient aerosol particles. Geophysical Research Letters, 2009, 36, .	4.0	124
104	Laboratory studies of products of N $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ uptake on Cl $<$ sup $>$ â $^{\circ}$ 2 $<$ /sup $>$ containing substrates. Geophysical Research Letters, 2009, 36, .	4.0	107
105	Relative humidity dependence of light absorption by mineral dust after longâ€range atmospheric transport from the Sahara. Geophysical Research Letters, 2009, 36, .	4.0	38
106	Maritime Aerosol Network as a component of Aerosol Robotic Network. Journal of Geophysical Research, 2009, 114, .	3.3	258
107	Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V <i>Ronald Brown</i> during TEXAQS/GoMACCS 2006. Journal of Geophysical Research, 2009, 114, .	3.3	126
108	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. Journal of Geophysical Research, 2009, 114, .	3.3	162

#	Article	IF	CITATIONS
109	Aerosol optical and hygroscopic properties during TexAQSâ€GoMACCS 2006 and their impact on aerosol direct radiative forcing. Journal of Geophysical Research, 2009, 114, .	3.3	65
110	Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008. Atmospheric Chemistry and Physics, 2009, 9, 8883-8888.	4.9	93
111	Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmospheric Chemistry and Physics, 2009, 9, 1365-1392.	4.9	187
112	High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geoscience, 2008, 1, 324-328.	12.9	403
113	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. Journal of Geophysical Research, 2008, 113, .	3.3	173
114	Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes. Journal of Geophysical Research, 2008, 113, .	3.3	73
115	Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Ambient Measurements. Aerosol Science and Technology, 2008, 42, 1033-1041.	3.1	246
116	Influence of particle size and chemistry on the cloud nucleating properties of aerosols. Atmospheric Chemistry and Physics, 2008, 8, 1029-1042.	4.9	113
117	Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 2008, 8, 1723-1735.	4.9	346
118	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	4.9	94
119	Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics, 2007, 7, 5937-5943.	4.9	521
120	Isotopic analysis of aerosol sulfate and nitrate during ITCTâ€2k2: Determination of different formation pathways as a function of particle size. Journal of Geophysical Research, 2007, 112, .	3.3	45
121	Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study-Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition. Journal of Geophysical Research, 2007, 112, .	3.3	41
122	Multi-grid-cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004. Journal of Geophysical Research, 2007, 112, .	3.3	39
123	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
124	Global sea-salt modeling: Results and validation against multicampaign shipboard measurements. Journal of Geophysical Research, 2007, 112, .	3.3	77
125	Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 115-129.	1.6	235
126	Arctic haze: current trends and knowledge gaps. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 99-114.	1.6	318

#	Article	lF	CITATIONS
127	Summertime pollution events in the Arctic and potential implications. Journal of Geophysical Research, 2006, 111, .	3.3	39
128	Aerosol optical properties during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation: Gulf of Maine surface measurements-Regional and case studies. Journal of Geophysical Research, 2006, 111 , .	3.3	18
129	Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. Journal of Geophysical Research, 2006, 111 , .	3.3	126
130	Characterization of Asian Dust during ACE-Asia. Global and Planetary Change, 2006, 52, 23-56.	3.5	190
131	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmospheric Chemistry and Physics, 2006, 6, 1657-1732.	4.9	135
132	Reactivity and loss mechanisms of NO3 and N2 O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002. Journal of Geophysical Research, 2006, 111, .	3.3	99
133	Modification, Calibration and a Field Test of an Instrument for Measuring Light Absorption by Particles. Aerosol Science and Technology, 2005, 39, 68-83.	3.1	249
134	Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H Brown during the Aerosol Characterization Experiment—Asia. Applied Optics, 2005, 44, 3805.	2.1	2
135	Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	134
136	A comparison and summary of aerosol optical properties as observed in situ from aircraft, ship, and land during ACE-Asia. Journal of Geophysical Research, 2005, 110 , .	3.3	74
137	Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	113
138	Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering. Journal of Geophysical Research, 2005, 110, .	3.3	61
139	ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution. Bulletin of the American Meteorological Society, 2004, 85, 367-380.	3.3	330
140	Aerosol optical properties measured on board theRonald H. Brownduring ACE-Asia as a function of aerosol chemical composition and source region. Journal of Geophysical Research, 2004, 109, .	3.3	123
141	Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. Journal of Geophysical Research, 2004, 109, .	3.3	56
142	Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. Journal of Geophysical Research, 2004, 109, .	3.3	94
143	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004, 109, .	3.3	80
144	Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. Journal of Geophysical Research, 2004, 109, .	3.3	144

#	Article	IF	Citations
145	Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model. Journal of Geophysical Research, 2004, 109, .	3.3	80
146	Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. Journal of Geophysical Research, 2004, 109, .	3.3	76
147	Environmental snapshots from ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	42
148	Spectral absorption of solar radiation by aerosols during ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	49
149	Nighttime removal of NOxin the summer marine boundary layer. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	127
150	Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002. Journal of Geophysical Research, 2004, 109 , .	3.3	30
151	Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia. Atmospheric Environment, 2003, 37, 1435-1449.	4.1	106
152	Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective. Journal of Geophysical Research, 2003, 108, .	3.3	74
153	A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/VRonald H. Browndata and comparison with observations. Journal of Geophysical Research, 2003, 108, .	3.3	78
154	Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 2003, 108, .	3.3	109
155	North American, Asian, and Indian haze: Similar regional impacts on climate?. Geophysical Research Letters, 2003, 30, .	4.0	60
156	Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity. Journal of Geophysical Research, 2003, 108, .	3.3	234
157	Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. Journal of Geophysical Research, 2003, 108, .	3.3	60
158	ACE-Asia Intercomparison of a Thermal-Optical Method for the Determination of Particle-Phase Organic and Elemental Carbon. Environmental Science & Environmental Science & 2003, 37, 993-1001.	10.0	402
159	Clearâ€sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2927-2947.	2.7	54
160	In situ measurements and modeling of aerosol extinction in remote and polluted atmospheres. , 2003, , .		0
161	Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans. Atmospheric Chemistry and Physics, 2003, 3, 1377-1397.	4.9	104
162	Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques in Two North Atlantic Experiments. Journals of the Atmospheric Sciences, 2002, 59, 609-619.	1.7	85

#	Article	IF	Citations
163	Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. Journal of Geophysical Research, 2002, 107, INX2 30-1.	3.3	78
164	INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft. Journal of Geophysical Research, 2002, 107, INX2 32-1.	3.3	111
165	Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99. Journal of Geophysical Research, 2002, 107, INX2 25-1.	3.3	88
166	A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. Journal of Geophysical Research, 2002, 107, AAC 8-1-AAC 8-15.	3.3	239
167	Aerosol optical properties during INDOEX 1999: Means, variability, and controlling factors. Journal of Geophysical Research, 2002, 107, INX2 19-1.	3.3	106
168	Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. Journal of Geophysical Research, 2002, 107, INX2 18-1.	3.3	166
169	Aerosol optical depths and direct radiative forcing for INDOEX derived from AVHRR: Theory. Journal of Geophysical Research, 2002, 107, INX2 8-1.	3.3	24
170	Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 2001, 106, 28371-28398.	3.3	1,199
171	Lidar measurements during Aerosols99. Journal of Geophysical Research, 2001, 106, 20821-20831.	3.3	45
172	Dominant aerosol chemical components and their contribution to extinction during the Aerosols99 cruise across the Atlantic. Journal of Geophysical Research, 2001, 106, 20783-20809.	3.3	79
173	Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview. Journal of Geophysical Research, 2001, 106, 20767-20782.	3.3	80
174	Aerosol optical depth measurements during the Aerosols99 experiment. Journal of Geophysical Research, 2001, 106, 20811-20819.	3.3	33
175	Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 228-238.	1.6	12
176	Aerosol physical properties and processes in the lower marine boundary layer: a comparison of shipboard sub-micron data from ACE-1 and ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 258-272.	1.6	34
177	A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 239-257.	1.6	33
178	Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 484-497.	1.6	4
179	Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE-2, and comparison with selected land, ship, aircraft, and satellite measurements. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 594-619.	1.6	23
180	Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 375-400.	1.6	18

#	Article	IF	CITATIONS
181	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 290-320.	1.6	26
182	Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 401-422.	1.6	11
183	Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 662-677.	1.6	34
184	Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 348-374.	1.6	17
185	Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. Journal of Geophysical Research, 2000, 105, 24689-24712.	3.3	128
186	Surface submicron aerosol chemical composition: What fraction is not sulfate?. Journal of Geophysical Research, 2000, 105, 6785-6805.	3.3	70
187	Comment on "Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results―by Tegen et al Journal of Geophysical Research, 1999, 104, 4241-4248.	3.3	42
188	Oceanographic context of the First Aerosol Characterization Experiment (ACE 1): A physical, chemical, and biological overview. Journal of Geophysical Research, 1999, 104, 21649-21671.	3.3	46
189	Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature, 1998, 392, 62-65.	27.8	355
190	A Field Intercomparison of Three Cascade Impactors. Aerosol Science and Technology, 1998, 29, 475-492.	3.1	47
191	Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties. Journal of Geophysical Research, 1998, 103, 16547-16563.	3.3	171
192	Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1998, 103, 16369-16383.	3.3	156
193	Local closure during the First Aerosol Characterization Experiment (ACE 1): Aerosol mass concentration and scattering and backscattering coefficients. Journal of Geophysical Research, 1998, 103, 16575-16596.	3.3	89
194	The Combined Sensor Program: An Air–Sea Science Mission in the Central and Western Pacific Ocean. Bulletin of the American Meteorological Society, 1997, 78, 2797-2815.	3.3	23
195	Dimethylsulfide (DMS) in the equatorial Pacific Ocean (1982 to 1996): Evidence of a climate feedback?. Geophysical Research Letters, 1997, 24, 861-864.	4.0	57
196	Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmospheric Environment, 1996, 30, 869-884.	4.1	80
197	Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. Journal of Geophysical Research, 1996, 101, 6919-6930.	3.3	142
198	Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. Journal of Geophysical Research, 1996, 101, 6931-6951.	3.3	91

#	Article	IF	Citations
199	Processes controlling the physical properties of marine boundary layer aerosol particles during ACE 1., 1996,, 820.		1
200	Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry, 1996, 35, 27-73.	3.5	300
201	Estimation of the air/sea exchange of ammonia for the North Atlantic Basin. Biogeochemistry, 1996, 35, 275-304.	3.5	34
202	Estimation of the air/sea exchange of ammonia for the North Atlantic Basin. , 1996, , 275-304.		8
203	Chemical and optical properties of marine boundary layer aerosol particles during ACE 1., 1996,, 821.		0
204	Comparison of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. Journal of Geophysical Research, 1995, 100, 8977.	3.3	85
205	Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research, 1994, 99, 8257.	3.3	171
206	Observations of the atmospheric sulfur cycle on SAGA 3. Journal of Geophysical Research, 1993, 98, 16985-16995.	3.3	78
207	Dimethylsulfide/cloud condensation nuclei/climate system: Relevant sizeâ€resolved measurements of the chemical and physical properties of atmospheric aerosol particles. Journal of Geophysical Research, 1993, 98, 10411-10427.	3.3	108
208	Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean. Journal of Geophysical Research, 1992, 97, 9859-9865.	3.3	241
209	An intercomparison of five ammonia measurement techniques. Journal of Geophysical Research, 1992, 97, 11591-11611.	3.3	45
210	New particle formation in the marine boundary layer. Journal of Geophysical Research, 1992, 97, 20581-20589.	3.3	204
211	Equilibria of the marine multiphase ammonia system. Journal of Atmospheric Chemistry, 1992, 14, 11-30.	3.2	51
212	The biogeochemical sulfur cycle in the marine boundary layer over the Northeast Pacific Ocean. Journal of Atmospheric Chemistry, 1990, 10, 59-81.	3.2	85
213	Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. Journal of Geophysical Research, 1990, 95, 16405-16416.	3.3	161
214	Collection efficiencies of a tandem sampling system for atmospheric aerosol particles and gaseous ammonia and sulfur dioxide. Environmental Science &	10.0	35
215	Simultaneous observations of ammonia in the atmosphere and ocean. Nature, 1988, 335, 336-338.	27.8	158
216	Ammonia, the dominant base in the remote marine troposphere: a review. Tellus, Series B: Chemical and Physical Meteorology, 1987, 39B, 413-425.	1.6	39

#	Article	IF	CITATIONS
217	Wintertime Observations of Tropical Northwest Atlantic Aerosol Properties during ATOMIC: Varying Mixtures of Dust and Biomass Burning. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	1