
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7342201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	1.2	4,319
2	Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 2001, 106, 28371-28398.	3.3	1,199
3	Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science, 2012, 337, 1078-1081.	6.0	618
4	A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 2010, 464, 271-274.	13.7	562
5	The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 2011, 480, 51-56.	13.7	532
6	Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics, 2007, 7, 5937-5943.	1.9	521
7	Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 2011, 11, 3137-3157.	1.9	503
8	High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geoscience, 2008, 1, 324-328.	5.4	403
9	ACE-Asia Intercomparison of a Thermal-Optical Method for the Determination of Particle-Phase Organic and Elemental Carbon. Environmental Science & amp; Technology, 2003, 37, 993-1001.	4.6	402
10	Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature, 1998, 392, 62-65.	13.7	355
11	Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 2008, 8, 1723-1735.	1.9	346
12	ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution. Bulletin of the American Meteorological Society, 2004, 85, 367-380.	1.7	330
13	Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6652-6657.	3.3	322
14	Arctic haze: current trends and knowledge gaps. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 99-114.	0.8	318
15	Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry, 1996, 35, 27-73.	1.7	300
16	Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chemical Reviews, 2015, 115, 4383-4399.	23.0	289
17	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 2011, 11, 2423-2453.	1.9	259
18	Maritime Aerosol Network as a component of Aerosol Robotic Network. Journal of Geophysical Research, 2009, 114, .	3.3	258

#	Article	IF	CITATIONS
19	Modification, Calibration and a Field Test of an Instrument for Measuring Light Absorption by Particles. Aerosol Science and Technology, 2005, 39, 68-83.	1.5	249
20	Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Ambient Measurements. Aerosol Science and Technology, 2008, 42, 1033-1041.	1.5	246
21	Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean. Journal of Geophysical Research, 1992, 97, 9859-9865.	3.3	241
22	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	1.9	240
23	A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. Journal of Geophysical Research, 2002, 107, AAC 8-1-AAC 8-15.	3.3	239
24	Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 115-129.	0.8	235
25	Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity. Journal of Geophysical Research, 2003, 108, .	3.3	234
26	Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nature Geoscience, 2014, 7, 228-232.	5.4	223
27	Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics, 2010, 10, 669-693.	1.9	218
28	Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring. Atmospheric Environment, 2011, 45, 7301-7318.	1.9	206
29	New particle formation in the marine boundary layer. Journal of Geophysical Research, 1992, 97, 20581-20589.	3.3	204
30	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
31	A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmospheric Chemistry and Physics, 2014, 14, 1277-1297.	1.9	192
32	Characterization of Asian Dust during ACE-Asia. Global and Planetary Change, 2006, 52, 23-56.	1.6	190
33	Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmospheric Chemistry and Physics, 2009, 9, 1365-1392.	1.9	187
34	Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALSâ€REx 2008. Journal of Geophysical Research, 2010, 115, .	3.3	184
35	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. Journal of Geophysical Research, 2008, 113, .	3.3	173
36	Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research, 1994, 99, 8257.	3.3	171

#	Article	IF	CITATIONS
37	Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties. Journal of Geophysical Research, 1998, 103, 16547-16563.	3.3	171
38	Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics, 2010, 10, 9351-9368.	1.9	169
39	Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. Journal of Geophysical Research, 2002, 107, INX2 18-1.	3.3	166
40	Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nature Geoscience, 2017, 10, 674-679.	5.4	166
41	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. Journal of Geophysical Research, 2009, 114, .	3.3	162
42	Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. Journal of Geophysical Research, 1990, 95, 16405-16416.	3.3	161
43	Simultaneous observations of ammonia in the atmosphere and ocean. Nature, 1988, 335, 336-338.	13.7	158
44	Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1998, 103, 16369-16383.	3.3	156
45	Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 583-597.	1.2	152
46	Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmospheric Chemistry and Physics, 2015, 15, 9413-9433.	1.9	145
47	Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. Journal of Geophysical Research, 2004, 109, .	3.3	144
48	Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. Journal of Geophysical Research, 1996, 101, 6919-6930.	3.3	142
49	The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer. Frontiers in Marine Science, 2017, 4, .	1.2	137
50	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmospheric Chemistry and Physics, 2006, 6, 1657-1732.	1.9	135
51	Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	134
52	Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. Journal of Geophysical Research, 2000, 105, 24689-24712.	3.3	128
53	Nighttime removal of NOxin the summer marine boundary layer. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	127
54	Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. Journal of Geophysical Research, 2006, 111, .	3.3	126

#	Article	IF	CITATIONS
55	Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V <i>Ronald Brown</i> during TEXAQS/GoMACCS 2006. Journal of Geophysical Research, 2009, 114, .	3.3	126
56	Direct observations of N ₂ O ₅ reactivity on ambient aerosol particles. Geophysical Research Letters, 2009, 36, .	1.5	124
57	CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmospheric Chemistry and Physics, 2010, 10, 4795-4807.	1.9	124
58	Aerosol optical properties measured on board theRonald H. Brownduring ACE-Asia as a function of aerosol chemical composition and source region. Journal of Geophysical Research, 2004, 109, .	3.3	123
59	Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and Air Quality. Environmental Science & amp; Technology, 2011, 45, 9052-9060.	4.6	115
60	Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	113
61	Influence of particle size and chemistry on the cloud nucleating properties of aerosols. Atmospheric Chemistry and Physics, 2008, 8, 1029-1042.	1.9	113
62	INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft. Journal of Geophysical Research, 2002, 107, INX2 32-1.	3.3	111
63	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	1.2	111
64	Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 2003, 108, .	3.3	109
65	Dimethylsulfide/cloud condensation nuclei/climate system: Relevant sizeâ€resolved measurements of the chemical and physical properties of atmospheric aerosol particles. Journal of Geophysical Research, 1993, 98, 10411-10427.	3.3	108
66	Laboratory studies of products of N ₂ O ₅ uptake on Cl ^{â^'} containing substrates. Geophysical Research Letters, 2009, 36, .	1.5	107
67	Arctic Air Pollution: New Insights from POLARCAT-IPY. Bulletin of the American Meteorological Society, 2014, 95, 1873-1895.	1.7	107
68	Aerosol optical properties during INDOEX 1999: Means, variability, and controlling factors. Journal of Geophysical Research, 2002, 107, INX2 19-1.	3.3	106
69	Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia. Atmospheric Environment, 2003, 37, 1435-1449.	1.9	106
70	Sources and composition of submicron organic mass in marine aerosol particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,977.	1.2	106
71	Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans. Atmospheric Chemistry and Physics, 2003, 3, 1377-1397.	1.9	104
72	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103

#	Article	IF	CITATIONS
73	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	1.6	103
74	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
75	Reactivity and loss mechanisms of NO3 and N2 O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002. Journal of Geophysical Research, 2006, 111, .	3.3	99
76	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
77	Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. Journal of Geophysical Research, 2004, 109, .	3.3	94
78	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	1.9	94
79	Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008. Atmospheric Chemistry and Physics, 2009, 9, 8883-8888.	1.9	93
80	Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. Journal of Geophysical Research, 1996, 101, 6931-6951.	3.3	91
81	Local closure during the First Aerosol Characterization Experiment (ACE 1): Aerosol mass concentration and scattering and backscattering coefficients. Journal of Geophysical Research, 1998, 103, 16575-16596.	3.3	89
82	Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99. Journal of Geophysical Research, 2002, 107, INX2 25-1.	3.3	88
83	EUREC ⁴ A. Earth System Science Data, 2021, 13, 4067-4119.	3.7	88
84	The biogeochemical sulfur cycle in the marine boundary layer over the Northeast Pacific Ocean. Journal of Atmospheric Chemistry, 1990, 10, 59-81.	1.4	85
85	Comparison of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. Journal of Geophysical Research, 1995, 100, 8977.	3.3	85
86	Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques in Two North Atlantic Experiments. Journals of the Atmospheric Sciences, 2002, 59, 609-619.	0.6	85
87	Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere. Journal of Geophysical Research, 2012, 117, .	3.3	85
88	Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol. Atmospheric Environment, 2017, 154, 331-347.	1.9	81
89	Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmospheric Environment, 1996, 30, 869-884.	1.9	80
90	Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview. Journal of Geophysical Research, 2001, 106, 20767-20782.	3.3	80

#	Article	IF	CITATIONS
91	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004, 109, .	3.3	80
92	Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model. Journal of Geophysical Research, 2004, 109, .	3.3	80
93	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	1.5	80
94	Dominant aerosol chemical components and their contribution to extinction during the Aerosols99 cruise across the Atlantic. Journal of Geophysical Research, 2001, 106, 20783-20809.	3.3	79
95	Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmospheric Measurement Techniques, 2013, 6, 2115-2120.	1.2	79
96	Observations of the atmospheric sulfur cycle on SAGA 3. Journal of Geophysical Research, 1993, 98, 16985-16995.	3.3	78
97	Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. Journal of Geophysical Research, 2002, 107, INX2 30-1.	3.3	78
98	A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/VRonald H. Browndata and comparison with observations. Journal of Geophysical Research, 2003, 108, .	3.3	78
99	Global sea-salt modeling: Results and validation against multicampaign shipboard measurements. Journal of Geophysical Research, 2007, 112, .	3.3	77
100	Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. Journal of Geophysical Research, 2004, 109, .	3.3	76
101	A Measurement of Total Reactive Nitrogen, NO _{<i>y</i>} , together with NO ₂ , NO, and O ₃ via Cavity Ring-down Spectroscopy. Environmental Science & Technology, 2014, 48, 9609-9615.	4.6	75
102	A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 239.	0.8	74
103	Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective. Journal of Geophysical Research, 2003, 108, .	3.3	74
104	A comparison and summary of aerosol optical properties as observed in situ from aircraft, ship, and land during ACE-Asia. Journal of Geophysical Research, 2005, 110, .	3.3	74
105	Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes. Journal of Geophysical Research, 2008, 113, .	3.3	73
106	Organic aerosol characterization by complementary measurements of chemical bonds and molecular fragments. Atmospheric Environment, 2009, 43, 6100-6105.	1.9	73
107	Surface submicron aerosol chemical composition: What fraction is not sulfate?. Journal of Geophysical Research, 2000, 105, 6785-6805.	3.3	70
108	Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter. Geophysical Research Letters, 2010, 37, .	1.5	70

#	Article	IF	CITATIONS
109	Aerosol physical properties and processes in the lower marine boundary layer: a comparison of shipboard sub-micron data from ACE-1 and ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 258.	0.8	66
110	Aerosol optical and hygroscopic properties during TexAQSâ€GoMACCS 2006 and their impact on aerosol direct radiative forcing. Journal of Geophysical Research, 2009, 114, .	3.3	65
111	The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol. ACS Central Science, 2015, 1, 132-141.	5.3	64
112	Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmospheric Chemistry and Physics, 2018, 18, 10615-10643.	1.9	64
113	Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. Journal of Geophysical Research, 2011, 116, .	3.3	62
114	Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering. Journal of Geophysical Research, 2005, 110, .	3.3	61
115	North American, Asian, and Indian haze: Similar regional impacts on climate?. Geophysical Research Letters, 2003, 30, .	1.5	60
116	Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. Journal of Geophysical Research, 2003, 108, .	3.3	60
117	A case study into the measurement of ship emissions from plume intercepts of the NOAA ship <i>Miller Freeman</i> . Atmospheric Chemistry and Physics, 2014, 14, 1337-1352.	1.9	58
118	Dimethylsulfide (DMS) in the equatorial Pacific Ocean (1982 to 1996): Evidence of a climate feedback?. Geophysical Research Letters, 1997, 24, 861-864.	1.5	57
119	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.	1.9	57
120	Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. Journal of Geophysical Research, 2004, 109, .	3.3	56
121	Clearâ€sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2927-2947.	1.0	54
122	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	1.7	52
123	Equilibria of the marine multiphase ammonia system. Journal of Atmospheric Chemistry, 1992, 14, 11-30.	1.4	51
124	Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9208-9219.	1.2	51
125	Evaluation of groundâ€based black carbon measurements by filterâ€based photometers at two Arctic sites. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3544-3572.	1.2	51
126	Atmospheric sulfur cycling in the southeastern Pacific – longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5079-5097.	1.9	50

#	Article	IF	CITATIONS
127	Spectral absorption of solar radiation by aerosols during ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	49
128	Light-enhanced primary marine aerosol production from biologically productive seawater. Geophysical Research Letters, 2014, 41, 2661-2670.	1.5	48
129	A Field Intercomparison of Three Cascade Impactors. Aerosol Science and Technology, 1998, 29, 475-492.	1.5	47
130	Characterization of black carbon ontaining particles from soot particle aerosol mass spectrometer measurements on the R/V <i>Atlantis</i> during CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2575-2593.	1.2	47
131	Oceanographic context of the First Aerosol Characterization Experiment (ACE 1): A physical, chemical, and biological overview. Journal of Geophysical Research, 1999, 104, 21649-21671.	3.3	46
132	AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bulletin of the American Meteorological Society, 2020, 101, E1069-E1091.	1.7	46
133	An intercomparison of five ammonia measurement techniques. Journal of Geophysical Research, 1992, 97, 11591-11611.	3.3	45
134	Lidar measurements during Aerosols99. Journal of Geophysical Research, 2001, 106, 20821-20831.	3.3	45
135	Isotopic analysis of aerosol sulfate and nitrate during ITCTâ€2k2: Determination of different formation pathways as a function of particle size. Journal of Geophysical Research, 2007, 112, .	3.3	45
136	Black carbon emissions from in-use ships: a California regional assessment. Atmospheric Chemistry and Physics, 2014, 14, 1881-1896.	1.9	45
137	Observations of gas phase hydrochloric acid in the polluted marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6897-6915.	1.2	44
138	Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20309-20314.	3.3	43
139	Comment on "Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results―by Tegen et al Journal of Geophysical Research, 1999, 104, 4241-4248.	3.3	42
140	Environmental snapshots from ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	42
141	Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study-Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition. Journal of Geophysical Research, 2007, 112, .	3.3	41
142	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 290.	0.8	40
143	Evolving research directions in Surface Ocean - Lower Atmosphere (SOLAS) science. Environmental Chemistry, 2013, 10, 1.	0.7	40
144	Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chemistry and Physics, 2022, 22, 3067-3096.	1.9	40

#	Article	IF	CITATIONS
145	Ammonia, the dominant base in the remote marine troposphere: a review. Tellus, Series B: Chemical and Physical Meteorology, 1987, 39B, 413-425.	0.8	39
146	Summertime pollution events in the Arctic and potential implications. Journal of Geophysical Research, 2006, 111, .	3.3	39
147	Multi-grid-cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004. Journal of Geophysical Research, 2007, 112, .	3.3	39
148	Relative humidity dependence of light absorption by mineral dust after longâ€range atmospheric transport from the Sahara. Geophysical Research Letters, 2009, 36, .	1.5	38
149	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	1.2	36
150	Collection efficiencies of a tandem sampling system for atmospheric aerosol particles and gaseous ammonia and sulfur dioxide. Environmental Science & Technology, 1989, 23, 736-739.	4.6	35
151	Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science, 2013, 339, 393-393.	6.0	35
152	Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8384-8399.	1.2	35
153	Coupled oceanâ€atmosphere loss of marine refractory dissolved organic carbon. Geophysical Research Letters, 2016, 43, 2765-2772.	1.5	35
154	Estimation of the air/sea exchange of ammonia for the North Atlantic Basin. Biogeochemistry, 1996, 35, 275-304.	1.7	34
155	Aerosol physical properties and processes in the lower marine boundary layer: a comparison of shipboard sub-micron data from ACE-1 and ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 258-272.	0.8	34
156	Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 662-677.	0.8	34
157	Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS Instrument. Aerosol Science and Technology, 2009, 43, 486-501.	1.5	34
158	Causes of variability in light absorption by particles in snow at sites in Idaho and Utah. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4751-4768.	1.2	34
159	A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 239-257.	0.8	33
160	Aerosol optical depth measurements during the Aerosols99 experiment. Journal of Geophysical Research, 2001, 106, 20811-20819.	3.3	33
161	The impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V <i>Atlantis</i> during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5003-5017.	1.2	33
162	Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,567.	1.2	33

#	Article	IF	CITATIONS
163	Peroxynitric acid (HO ₂ NO ₂) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 8101-8114.	1.9	33
164	Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. Atmospheric Chemistry and Physics, 2015, 15, 5727-5741.	1.9	33
165	Modeling heterogeneous ClNO2 formation, chloride availability, and chlorine cycling in Southeast Texas. Atmospheric Environment, 2010, 44, 5476-5488.	1.9	32
166	Molecular distributions and isotopic compositions of organic aerosols over the western North Atlantic: Dicarboxylic acids, related compounds, sugars, and secondary organic aerosol tracers. Organic Geochemistry, 2017, 113, 229-238.	0.9	32
167	Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002. Journal of Geophysical Research, 2004, 109, .	3.3	30
168	Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network. Atmospheric Measurement Techniques, 2012, 5, 377-388.	1.2	30
169	Variability in Marine Plankton Ecosystems Are Not Observed in Freshly Emitted Sea Spray Aerosol Over the North Atlantic Ocean. Geophysical Research Letters, 2020, 47, e2019GL085938.	1.5	30
170	Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030913.	1.2	30
171	Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 228.	0.8	28
172	Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data. Atmospheric Pollution Research, 2011, 2, 283-299.	1.8	28
173	Measurements from the RV <i>Ronald H. Brown</i> and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth System Science Data, 2021, 13, 1759-1790.	3.7	28
174	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 290-320.	0.8	26
175	Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer. Atmospheric Measurement Techniques, 2014, 7, 3399-3412.	1.2	25
176	Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles. Aerosol Science and Technology, 2014, 48, v-x.	1.5	25
177	Aerosol optical depths and direct radiative forcing for INDOEX derived from AVHRR: Theory. Journal of Geophysical Research, 2002, 107, INX2 8-1.	3.3	24
178	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 2016, 16, 573-583.	1.9	24
179	The Combined Sensor Program: An Air–Sea Science Mission in the Central and Western Pacific Ocean. Bulletin of the American Meteorological Society, 1997, 78, 2797-2815.	1.7	23
180	Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE-2, and comparison with selected land, ship, aircraft, and satellite measurements. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 594-619.	0.8	23

#	Article	IF	CITATIONS
181	Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Maddenâ€Julian Oscillation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5736-5749.	1.2	22
182	Factors That Modulate Properties of Primary Marine Aerosol Generated From Ambient Seawater on Ships at Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,961.	1.2	22
183	Nitrous acid formation in a snow-free wintertime polluted rural area. Atmospheric Chemistry and Physics, 2018, 18, 1977-1996.	1.9	22
184	Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 401.	0.8	21
185	Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,282.	1.2	21
186	Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 484.	0.8	20
187	Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties. Atmospheric Chemistry and Physics, 2010, 10, 51-61.	1.9	19
188	From Sugar to Flowers: A Transition of Shallow Cumulus Organization During ATOMIC. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002619.	1.3	19
189	Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 375-400.	0.8	18
190	Aerosol optical properties during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation: Gulf of Maine surface measurements-Regional and case studies. Journal of Geophysical Research, 2006, 111, .	3.3	18
191	Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 348-374.	0.8	17
192	Ammonia, the dominant base in the remote marine troposphere: a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 39, 413.	0.8	16
193	Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 348.	0.8	16
194	Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 375.	0.8	16
195	A practical set of miniaturized instruments for vertical profiling of aerosol physical properties. Aerosol Science and Technology, 2017, 51, 715-723.	1.5	16
196	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	1.9	15
197	Particulate organic nitrates observed in an oil and natural gas production region during wintertime. Atmospheric Chemistry and Physics, 2015, 15, 9313-9325.	1.9	14
198	Surface ocean-lower atmosphere study: Scientific synthesis and contribution to Earth system science. Anthropocene, 2015, 12, 54-68.	1.6	13

#	Article	IF	CITATIONS
199	Longâ€Term Trends for Marine Sulfur Aerosol in the Alaskan Arctic and Relationships With Temperature. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033225.	1.2	13
200	Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 228-238.	0.8	12
201	Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 401-422.	0.8	11
202	Source characterization from ambient measurements of aerosol optical properties. Geophysical Research Letters, 2009, 36, .	1.5	11
203	Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104496119.	3.3	11
204	Seasonal Differences in Submicron Marine Aerosol Particle Organic Composition in the North Atlantic. Frontiers in Marine Science, 2021, 8, .	1.2	9
205	North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: polysaccharides, recalcitrant material, and secondary organics. Atmospheric Chemistry and Physics, 2020, 20, 16007-16022.	1.9	9
206	Estimation of the air/sea exchange of ammonia for the North Atlantic Basin. , 1996, , 275-304.		8
207	The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA. Atmospheric Chemistry and Physics, 2016, 16, 13837-13851.	1.9	7
208	Characterization of Sea Surface Microlayer and Marine Aerosol Organic Composition Using STXM-NEXAFS Microscopy and FTIR Spectroscopy. ACS Earth and Space Chemistry, 2022, 6, 1899-1913.	1.2	5
209	Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 484-497.	0.8	4
210	Arctic Aerosols. Springer Polar Sciences, 2020, , 209-329.	0.0	4
211	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	1.9	4
212	Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H Brown during the Aerosol Characterization Experiment—Asia. Applied Optics, 2005, 44, 3805.	2.1	2
213	Processes controlling the physical properties of marine boundary layer aerosol particles during ACE 1. , 1996, , 820.		1
214	Regional signatures in the organic composition of marine aerosol particles. , 2013, , .		1
215	Wintertime Observations of Tropical Northwest Atlantic Aerosol Properties during ATOMIC: Varying Mixtures of Dust and Biomass Burning. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	1
216	In situ measurements and modeling of aerosol extinction in remote and polluted atmospheres. , 2003, ,		0

#	Article	IF	CITATIONS
217	Chemical and optical properties of marine boundary layer aerosol particles during ACE 1., 1996, , 821.		0