Zhaoyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7341032/publications.pdf

Version: 2024-02-01

471509 330143 1,493 60 17 37 citations h-index g-index papers 60 60 60 1816 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-Mode Photonic Crystal Nanobeam Lasers Monolithically Grown on Si for Dense Integration. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-6.	2.9	4
2	Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network. Nanomaterials, 2022, 12, 1372.	4.1	6
3	EA-Directing Formamidinium-Based Perovskite Microwires with A-Site Doping. ACS Omega, 2021, 6, 7157-7164.	3.5	1
4	Deep learning-based modeling of photonic crystal nanocavities. Optical Materials Express, 2021, 11, 2122.	3.0	11
5	Microcavity lasers directly grown on silicon. , 2021, , .		O
6	Various microcavity lasers monolithically grown on planar on-axis Si (001) substrates., 2021,,.		0
7	Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Applied Materials & Sheet. ACS ACS ACS ACS ACS ACS APPLIED & Sheet. ACS	8.0	14
8	Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nature Communications, 2020, 11, 977.	12.8	61
9	Ultra-thin curved visible microdisk lasers with three-dimensional whispering gallery modes. Nanophotonics, 2020, 9, 2997-3002.	6.0	10
10	Photonic crystal lasers grown on CMOS-compatible on-axis Si(001)., 2020,,.		0
11	Multiphotoluminescence from a Triphenylamine Derivative and Its Application in White Organic Lightâ€Emitting Diodes Based on a Single Emissive Layer. Advanced Materials, 2019, 31, e1900613.	21.0	25
12	Hydrothermal synthesis of reduced graphene oxide-modified NiCo2O4 nanowire arrays with enhanced reactivity for supercapacitors. Journal of Alloys and Compounds, 2019, 792, 474-480.	5.5	46
13	Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry–Pérot mode lasing. Journal of Materials Chemistry C, 2019, 7, 4102-4108.	5. 5	18
14	Cantilever-based freestanding InGaP/InGaAlP quantum wells microring lasers. Applied Physics Letters, 2019, 114, 071103.	3.3	2
15	Electro-remediation of tailings from a multi-metal sulphide mine: comparing removal efficiencies of Pb, Zn, Cu and Cd. Chemistry and Ecology, 2019, 35, 54-68.	1.6	5
16	Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 2019, 6, 430.	9.3	37
17	Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 127 to 141  μm. Photonics Research, 2019, 7, 508.	7.0	6
18	Cantilever-Based Microring Lasers. , 2018, , .		0

#	Article	IF	Citations
19	Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate. Optics Express, 2018, 26, 16797.	3.4	14
20	A simple method to improve the performance of perovskite light-emitting diodes <i>via</i> layer-by-layer spin-coating CsPbBr ₃ quantum dots. RSC Advances, 2018, 8, 27201-27206.	3.6	5
21	Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges. AIP Advances, 2018, 8, .	1.3	7
22	Cantilever-based microring lasers embedded in a flexible substrate for strain and index gauges. , 2018, , .		O
23	Characteristic analysis and comparison of two kinds of hybrid plasmonic annular resonators. Journal of Nanophotonics, 2017, 11, 026006.	1.0	0
24	Near-perfect absorber of infrared radiation based on Au nanorod arrays. Journal of Nanophotonics, 2017, 11, 016018.	1.0	4
25	Characteristic analysis and comparison of two kinds of hybrid plasmonic annular resonators. , 2017, ,		0
26	Proposal and numerical study of a flexible visible photonic crystal defect cavity for nanoscale strain sensors. Optics Express, 2017, 25, 23645.	3.4	4
27	Tungsten-based highly selective solar absorber using simple nanodisk array. Optics Express, 2017, 25, A1072.	3.4	40
28	Flexible visible photonic crystal laser., 2017,,.		0
29	Two-dimensional fivefold photonic crystal micro-cavity. , 2017, , .		0
30	Flexible visible photonic crystal laser cavity., 2017,,.		0
31	Two-dimensional fivefold photonic crystal microcavity. Journal of Nanophotonics, 2017, 11, 1.	1.0	1
32	Flexible Hybrid Microdisk Cavity for Lasing. , 2017, , .		0
33	Upgrade of the hot zone for large-size high-performance multi-crystalline silicon ingot casting. Journal of Crystal Growth, 2016, 441, 58-63.	1.5	21
34	Further absorption enhancement in ultra-thin solar cells structured with multiple-level grating. Optical and Quantum Electronics, 2015, 47, 1519-1526.	3.3	1
35	Influence of germanium doping on the performance of high-performance multi-crystalline silicon. Journal of Crystal Growth, 2015, 416, 57-61.	1.5	3
36	Optimization of the high-performance multi-crystalline silicon solidification process by insulation partition design using transient global simulations. Journal of Crystal Growth, 2015, 426, 110-116.	1.5	41

#	Article	IF	CITATIONS
37	Broadband absorption enhancement in ultrathin-film solar cells by combining dielectric nanogratings and metallic nanoribbons. Journal of Nanophotonics, 2015, 9, 093596.	1.0	2
38	Coupled optical and electrical numerical simulation for dual interface line grating Si thin film solar cells. , 2015 , , .		0
39	Shape-induced effect on c-Si thin film solar cell efficiency. , 2014, , .		0
40	Hybrid plasmonic ring resonator at subwavelength scale in the visible spectrum. Journal of Nanophotonics, 2014, 8, 083990.	1.0	0
41	Bowtie nanoantennas with symmetry breaking. Journal of Nanophotonics, 2014, 9, 093798.	1.0	4
42	Absorption enhancement of thin film solar cells using back binary metallic grating. Optical and Quantum Electronics, 2014, 46, 1365-1372.	3.3	8
43	Polarization insensitive perfect absorber with nanorod arrays. , 2014, , .		1
44	Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification. Journal of Crystal Growth, 2014, 386, 52-56.	1.5	87
45	Double grating antireflection nanostructure based on nano-cone. , 2014, , .		0
46	Triangle defects in bowtie nanoantennas. Applied Physics A: Materials Science and Processing, 2013, 112, 591-596.	2.3	3
47	Absorption enhancement of a-Si thin film solar cells through surface plasmon polaritons and cavity resonance. , 2013, , .		0
48	Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes. ACS Nano, 2011, 5, 3970-3976.	14.6	118
49	Whispering Gallery Mode Lasing from Zinc Oxide Hexagonal Nanodisks. ACS Nano, 2010, 4, 3270-3276.	14.6	228
50	Coating effect on optical resonance of plasmonic nanobowtie antenna. Applied Physics Letters, 2010, 97, 063106.	3.3	35
51	Visible 2-dimentional Photonic Crystal Laser. , 2007, , .		0
52	Nanoimprinted circular grating distributed feedback dye laser. Applied Physics Letters, 2007, 91, .	3.3	47
53	Visible submicron microdisk lasers. Applied Physics Letters, 2007, 90, 111119.	3.3	76
54	Visible 2-dimentional photonic crystal laser. , 2007, , .		0

#	Article	IF	CITATIONS
55	Optofluidic Microring Dye Laser. LEOS Summer Topical Meeting, 2007, , .	0.0	7
56	Single mode optofluidic distributed feedback dye laser. Optics Express, 2006, 14, 696.	3.4	335
57	Mechanically tunable optofluidic distributed feedback dye laser. Optics Express, 2006, 14, 10494.	3.4	128
58	Optofluidic distributed feedback dye laser. , 2006, , .		0
59	Visible two-dimensional photonic crystal slab laser. Applied Physics Letters, 2006, 89, 071102.	3.3	27
60	Mechanically Tunable Optofluidic Distributed Feedback Dye Laser. , 0, , .		0