
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7340396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naÃīve host ecosystem. New Phytologist, 2014, 201, 940-950.	7.3	115

2 Factors Influencing Flight Capacity of the Mountain Pine Beetle (Coleoptera: Curculionidae:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 T

3	Effect of Water Stress and Fungal Inoculation on Monoterpene Emission from an Historical and a New Pine Host of the Mountain Pine Beetle. Journal of Chemical Ecology, 2011, 37, 1013-1026.	1.8	47
4	Effects of nutrition and methoprene treatment upon reproductive diapause in Caloptilia fraxinella (Lepidoptera: Gracillariidae). Physiological Entomology, 2007, 32, 275-282.	1.5	42
5	Mating Disruption of Two Sympatric, Orchard-Inhabiting Tortricids, Choristoneura rosaceana and Pandemis limitata (Lepidoptera: Tortricidae), with Pheromone Components of Both Species' Blends. Journal of Economic Entomology, 1999, 92, 380-390.	1.8	41
6	Pheromone-mediated mating disruption ofChoristoneura rosaceana: is the most attractive blend really the most effective?. Entomologia Experimentalis Et Applicata, 1999, 90, 37-47.	1.4	39
7	When mating disruption does not disrupt mating: fitness consequences of delayed mating in moths. Entomologia Experimentalis Et Applicata, 2013, 146, 50-65.	1.4	38
8	Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle. Tree Physiology, 2017, 37, 338-350.	3.1	35
9	Title is missing!. Journal of Chemical Ecology, 1999, 25, 501-517.	1.8	33
10	The Lodgepole × Jack Pine Hybrid Zone in Alberta, Canada: A Stepping Stone for the Mountain Pine Beetle on its Journey East Across the Boreal Forest?. Journal of Chemical Ecology, 2013, 39, 1209-1220.	1.8	32
11	Factors influencing dispersal by flight in bark beetles (Coleoptera: Curculionidae: Scolytinae): from genes to landscapes. Canadian Journal of Forest Research, 2019, 49, 1024-1041.	1.7	31
12	Potential for the evolution of resistance to pheromone-based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Entomologia Experimentalis Et Applicata, 2001, 100, 131-134.	1.4	27
13	Title is missing!. Journal of Insect Behavior, 2000, 13, 499-510.	0.7	26
14	The Effect of Water Limitation on Volatile Emission, Tree Defense Response, and Brood Success of Dendroctonus ponderosae in Two Pine Hosts, Lodgepole, and Jack Pine. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	26
15	Aggregation and a strong <scp>A</scp> llee effect in a cooperative outbreak insect. Ecological Applications, 2016, 26, 2623-2636.	3.8	25
16	Factors influencing the effectiveness of an attracticide formulation against the Oriental fruit moth, Grapholita molesta. Entomologia Experimentalis Et Applicata, 2004, 112, 89-97.	1.4	23
17	Influence of Seeding Rate, Nitrogen Management, and Micronutrient Blend Applications on Pith Expression in Solidâ€Stemmed Spring Wheat. Crop Science, 2012, 52, 1316-1329.	1.8	23
18	Predictive Capabilities of a Pheromone-Based Monitoring System for Western Hemlock Looper (Lepidoptera: Geometridae). Environmental Entomology, 1995, 24, 933-943.	1.4	22

#	Article	IF	CITATIONS
19	Male Oriental Fruit Moth Response to a Combined Pheromone-Based Attracticide Formulation Targeting Both Oriental Fruit Moth and Codling Moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2005, 98, 317-325.	1.8	22
20	Progress Toward Integrated Pest Management of Pea Leaf Weevil: A Review. Annals of the Entomological Society of America, 2018, 111, 144-153.	2.5	22
21	Development of a Pheromone-Based Monitoring System for Western Hemlock Looper (Lepidoptera:) Tj ETQq1 1 923-932.	0.784314 1.4	rgBT /Overic 21
22	Body Size, Age, and Disease Influence Female Reproductive Performance in <1>Choristoneura conflictana 1 (Lepidoptera: Tortricidae). Annals of the Entomological Society of America, 2006, 99, 837-844.	2.5	21
23	Factors influencing flight potential of <i>Choristoneura conflictana</i> . Physiological Entomology, 2009, 34, 71-78.	1.5	21
24	Development of a Combined Sex Pheromone-based Monitoring System for <i>Malacosoma disstria</i> (Lepidoptera: Lasoicampidae) and <i>Choristoneura conflictana</i> (Lepidoptera:) Tj ETQq0 0 0 rgBT /	Overłock 1	0 2650 537
25	A synomone imparting distinct sex pheromone communication channels for Choristoneura rosaceana (Harris) and Pandemis limitata (Robinson) (Lepidoptera: Tortricidae). Chemoecology, 1999, 9, 73-80.	1.1	19
26	Peripheral and behavioral plasticity of pheromone response and its hormonal control in a long-lived moth. Journal of Experimental Biology, 2009, 212, 2000-2006.	1.7	19
27	Factors Affecting Pheromone-Baited Trap Capture of Male <i>Coleophora deauratella</i> , an Invasive Pest of Clover in Canada. Journal of Economic Entomology, 2013, 106, 844-854.	1.8	19
28	Initial Development of an Attracticide Formulation Against the Oriental Fruit Moth, <1>Grapholita molesta (Lepidoptera: Tortricidae). Environmental Entomology, 2004, 33, 213-220.	1.4	18
29	Inheritance and evolution of male response to sex pheromone in Trichoplusia ni (Lepidoptera:) Tj ETQq1 1 0.784	314.rgBT /0	Overlock 10
30	Plasticity of male response to sex pheromone depends on physiological state in a long-lived moth. Animal Behaviour, 2008, 75, 663-672.	1.9	16
31	The effect of flight on reproduction in an outbreaking forest lepidopteran. Physiological Entomology, 2012, 37, 219-226.	1.5	16
32	Effect of horticultural oil on oviposition behaviour and egg survival in the obliquebanded leafroller (Lepidoptera: Tortricidae). Canadian Entomologist, 2009, 141, 86-94.	0.8	15
33	Efficacy of Chlorantraniliprole Seed Treatments Against Armyworm (<i>Mythimna unipuncta</i>) Tj ETQq1 1 0.7 188-195.	84314 rgB 1.8	T /Overlock 15
34	Phoretic mite associates of mountain pine beetle at the leading edge of an infestation in northwestern Alberta, Canada. Canadian Entomologist, 2011, 143, 44-55.	0.8	14
35	The potential for pheromone-based monitoring to predict larval populations of diamondback moth, Plutella xylostella (L.), in canola (Brassica napus L.). Crop Protection, 2013, 45, 89-97.	2.1	14
36	Biology and management of North American cone-feeding <i>Dioryctria</i> species. Canadian Entomologist, 2011, 143, 1-34.	0.8	13

#	Article	IF	CITATIONS
37	Resource Allocation to Flight in an Outbreaking Forest Defoliator Malacosoma disstria. Environmental Entomology, 2015, 44, 835-845.	1.4	13
38	Evaluation of Semiochemical-Baited Traps for Monitoring the Pea Leaf Weevil, Sitona lineatus (Coleoptera: Curculionidae) in Field Pea Crops. Environmental Entomology, 2018, 47, 93-106.	1.4	13
39	Diversity and abundance of arthropod by-catch in semiochemical-baited traps targeting apple clearwing moth (Lepidoptera: Sesiidae) in organic and conventional apple orchards in British Columbia, Canada. Canadian Entomologist, 2015, 147, 227-243.	0.8	12
40	Environmental conditions terminate reproductive diapause and influence pheromone perception in the longâ€lived moth <i><scp>C</scp>aloptilia fraxinella</i> . Physiological Entomology, 2015, 40, 30-42.	1.5	12
41	Potential for semiochemical-based monitoring of the pea leaf weevil (Coleoptera: Curculionidae) on field pea (Fabaceae) in the Canadian Prairie Provinces. Canadian Entomologist, 2016, 148, 595-602.	0.8	12
42	Morphological variation associated with dispersal capacity in a treeâ€killing bark beetle <i>Dendroctonus ponderosae</i> Hopkins. Agricultural and Forest Entomology, 2019, 21, 79-87.	1.3	12
43	Genetic diversity and population structure identify the potential source of the invasive red clover casebearer moth, Coleophora deauratella, in North America. Biological Invasions, 2016, 18, 3595-3609.	2.4	11
44	Disruption of Pheromone Communication of <i>Choristoneura rosaceana</i> (Lepidoptera:) Tj ETQq0 0 0 rgBT / Environmental Entomology, 2007, 36, 1189-1198.	Overlock : 1.4	10 Tf 50 467 1 10
45	Ecological applications of pheromone trapping of <i>Malacosoma disstria</i> and <i>Choristoneura conflictana</i> . Canadian Entomologist, 2008, 140, 573-581.	0.8	10
46	Biology of <i>Caloptilia fraxinella</i> (Lepidoptera: Gracillariidae) on ornamental green ash, <i>Fraxinus pennsylvanica</i> (Oleaceae). Canadian Entomologist, 2009, 141, 31-39.	0.8	10
47	Sex pheromone of the red clover casebearer moth, <i>Coleophora deauratella</i> , an invasive pest of clover in Canada. Entomologia Experimentalis Et Applicata, 2010, 137, 255-261.	1.4	10
48	Relationships among male <i>Coleophora deauratella</i> (<scp>L</scp> epidoptera:) Tj ETQq0 0 0 rgBT /Overloo phenology. Agricultural and Forest Entomology, 2014, 16, 207-215.	ck 10 Tf 50 1.3	0 307 Td (<scj 10</scj
49	Challenges of Mating Disruption Using Aerosol-Emitting Pheromone Puffers in Red Clover Seed Production Fields to Control Coleophora deauratella (Lepidoptera: Coleophoridae). Environmental Entomology, 2015, 44, 34-43.	1.4	10
50	The costs of colour: plasticity of melanin pigmentation in an outbreaking polymorphic forest moth. Entomologia Experimentalis Et Applicata, 2015, 154, 242-250.	1.4	10
51	The effect of cold storage of mass-reared codling moths (Lepidoptera: Tortricidae) on subsequent flight capacity. Canadian Entomologist, 2017, 149, 391-398.	0.8	10
52	Semiochemical-Based Management of the Pea Leaf Weevil (Coleoptera: Curculionidae). Annals of the Entomological Society of America, 2018, 111, 154-160.	2.5	10
53	Bumble Bees (Hymenoptera: Apidae) Respond to Moth (Lepidoptera: Noctuidae) Pheromone Components, Leading to Bee Bycatch in Monitoring Traps Targeting Moth Pests. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	10
54	Assessing the Mating Status of Male Obliquebanded Leafrollers <1>Choristoneura rosaceana 1 (Lepidoptera: Tortricidae) by Dissection of Male and Female Moths. Annals of the Entomological Society of America, 2003, 96, 217-224.	2.5	9

#	Article	IF	CITATIONS
55	Mechanisms of Pheromone Communication Disruption in Choristoneura rosaceana Exposed to Microencapsulated (Z)-11-tetradecenyl Acetate Formulated with and Without Horticultural Oil. Journal of Chemical Ecology, 2008, 34, 1096-1106.	1.8	9
56	Assessment of Commercially Available Pheromone Lures for Monitoring Diamondback Moth (Lepidoptera: Plutellidae) in Canola. Journal of Economic Entomology, 2010, 103, 654-661.	1.8	9
57	Factors Influencing Male <i>Plutella xylostella</i> (Lepidoptera: Plutellidae) Capture Rates in Sex Pheromone-Baited Traps on Canola in Western Canada. Journal of Economic Entomology, 2014, 107, 2067-2076.	1.8	9
58	Forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae), mate-finding behavior is greatest at intermediate population densities: implications for interpretation of moth capture in pheromone-baited traps. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	9
59	The influence of Canadian research on semiochemical-based management of forest insect pests in Canada. Canadian Entomologist, 2016, 148, S170-S209.	0.8	9
60	Energy use by the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) for dispersal by flight. Physiological Entomology, 2019, 44, 200-208.	1.5	9
61	Canola Nutrition and Variety Affect Oviposition and Offspring Performance in the Generalist Herbivore, Mamestra configurata (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2018, 111, 1702-1710.	1.8	8
62	Sex pheromone of the large aspen tortrix, Choristoneura conflictana(Lepidoptera: Tortricidae). Chemoecology, 2006, 16, 115-122.	1.1	7
63	The use of plant volatiles for host location by an ash (Fraxinus) specialist, Caloptilia fraxinella. Chemoecology, 2014, 24, 229-242.	1.1	7
64	Efficacy and Mechanisms of Communication Disruption of the Red Clover Casebearer Moth (Coleophora deauratella) with Complete and Partial Pheromone Formulations. Journal of Chemical Ecology, 2014, 40, 577-589.	1.8	7
65	State-Dependent Plasticity in Response to Host-Plant Volatiles in a Long-Lived Moth, Caloptilia fraxinella (Lepidoptera: Gracillariidae). Journal of Chemical Ecology, 2018, 44, 276-287.	1.8	7
66	Effects of Exposure to Pheromone and Insecticide Constituents of an Attracticide Formulation on Reproductive Behavior of Oriental Fruit Moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2005, 98, 334-341.	1.8	6
67	Potential for combining sex pheromones for the forest tent caterpillar (Lepidoptera: Lasiocampidae) and the large aspen tortrix (Lepidoptera: Tortricidae) within monitoring traps targeting both species. Canadian Entomologist, 2005, 137, 615-619.	0.8	6
68	Do Interactions between Residue Management and Direct Seeding System Affect Wheat Stem Sawfly and Grain Yield?. Agronomy Journal, 2011, 103, 1635-1644.	1.8	6
69	Differential parasitism by a generalist parasitoid is mediated by volatile organic chemicals of the herbivore's host. Arthropod-Plant Interactions, 2015, 9, 515-527.	1.1	6
70	Herbivoreâ€induced plants do not affect oviposition but do affect fitness of subsequent herbivores on canola. Entomologia Experimentalis Et Applicata, 2019, 167, 341-349.	1.4	6
71	Infection of canola by the root pathogen Plasmodiophora brassicae increases resistance to aboveground herbivory by bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae). Plant Science, 2020, 300, 110625.	3.6	6
72	Local and Landscape-Scale Features Influence Bumble Bee (Hymenoptera: Apidae) Bycatch in Bertha Armyworm Mamestra configurata (Lepidoptera: Noctuidae) Pheromone-Baited Monitoring Traps. Environmental Entomology, 2020, 49, 1127-1136.	1.4	6

#	Article	IF	CITATIONS
73	Assessment of Available Tools for Monitoring Wheat Midge (Diptera: Cecidomyiidae). Environmental Entomology, 2020, 49, 627-637.	1.4	6
74	Smallâ€plot studies comparing pheromone and juice baits for massâ€trapping invasive <i><scp>S</scp>ynanthedon myopaeformis</i> in <scp>C</scp> anada. Entomologia Experimentalis Et Applicata, 2012, 145, 102-114.	1.4	5
75	Parasitoid complex and bionomics of <i>Apanteles polychrosidis</i> (Hymenoptera: Braconidae) on the ash leaf-cone roller (Lepidoptera: Gracillariidae). Canadian Entomologist, 2013, 145, 416-429.	0.8	5
76	Host plant preference and offspring performance of a leafâ€mining moth, <i><scp>C</scp>aloptilia fraxinella</i> , on two <i><scp>F</scp>raxinus</i> species. Entomologia Experimentalis Et Applicata, 2016, 159, 311-326.	1.4	5
77	Size and protein content of accessory glands in adult male <i>Caloptilia fraxinella</i> in different physiological Entomology, 2016, 41, 74-82.	1.5	5
78	Testing for trade-offs between flight and reproduction in the mountain pine beetle (Coleoptera:) Tj ETQq0 0 0 rg	BT /Qverlo	ock ₅ 10 Tf 50 5

79	Attractiveness and toxicity of an attracticide formulation on adult males of ash leaf cone roller, CaloptiliaÂfraxinella. Entomologia Experimentalis Et Applicata, 2008, 127, 30-38.	1.4	4
80	Patterns of Diversity in the Symbiotic Mite Assemblage of the Mountain Pine Beetle, Dendroctonus Ponderosae Hopkins. Forests, 2020, 11, 1102.	2.1	4
81	Mechanisms and consequences of flight polyphenisms in an outbreaking bark beetle species. Journal of Experimental Biology, 2020, 223, .	1.7	4
82	Modeling the dispersal–reproduction trade-off in an expanding population. Theoretical Population Biology, 2020, 134, 147-159.	1.1	4
83	Cocoonâ€spinning larvae of Oriental fruit moth and Indianmeal moth do not produce aggregation pheromone. Agricultural and Forest Entomology, 2009, 11, 205-212.	1.3	3
84	Mating disruption of <i>Coleophora deauratella</i> (Lepidoptera: Coleophoridae) using laminate flakes in red clover seed production fields. Pest Management Science, 2015, 71, 1149-1157.	3.4	3
85	The roles of juvenile hormone and biogenic amines on pheromone response plasticity and diapause termination in male <i>Caloptilia fraxinella</i> . Entomologia Experimentalis Et Applicata, 2016, 158, 184-201.	1.4	3
86	Olfactory hostâ€finding behaviour of <i>Oulema melanopus</i> (Coleoptera: Chrysomelidae) and its parasitoid, <i>Tetrastichus julis</i> (Hymenoptera: Eulophidae). Journal of Applied Entomology, 2017, 141, 740-750.	1.8	3
87	Influence of Host Plant Species and Fertilization Regime on Larval Performance and Feeding Preference of the Redbacked Cutworm and the Pale Western Cutworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2020, 113, 731-741.	1.8	3
88	Biology and management of the generalist herbivore, the bertha armyworm, iMamestra configurata/i (Lepidoptera: Noctuidae), on canola in western Canada , 0, , 114-129.		3
89	Effect of Environmental Conditions on Flight Capacity in Mountain Pine Beetle (Coleoptera:) Tj ETQq1 1 0.7843	14 rgBT /C 0:7	verlock 10 T
90	Influence of crop variety and fertilization on oviposition preference and larval performance of a generalist herbivore, the true armyworm, Mythimna unipuncta. Entomologia Experimentalis Et Applicata, 2020, 168, 266-278.	1.4	2

#	Article	IF	CITATIONS
91	Management of Pea Leaf Weevil (Coleoptera: Curculionidae) and Development of a Nominal Threshold in Faba Beans. Journal of Economic Entomology, 2021, 114, 1597-1606.	1.8	2
92	Male Oriental Fruit Moth Response to a Combined Pheromone-Based Attracticide Formulation Targeting Both Oriental Fruit Moth and Codling Moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2005, 98, 317-325.	1.8	2
93	Effects of Exposure to Pheromone and Insecticide Constituents of an Attracticide Formulation on Reproductive Behavior of Oriental Fruit Moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2005, 98, 334-341.	1.8	2
94	Developmental and Behavioral Effects and Retention of Incremental Rates of Rubidium Fed to Grapholita molesta (Lepidoptera: Tortricidae) in Dietary Medium. Journal of Entomological Science, 2012, 47, 316-326.	0.3	1
95	Effect of semiochemical exposure on flight propensity and flight capacity of Dendroctonus ponderosae in laboratory bioassays. Arthropod-Plant Interactions, 2021, 15, 551-562.	1.1	1
96	Host Plant Volatile Lures Attract Apanteles polychrosidis (Hymenoptera: Braconidae) to Ash Trees Infested With Caloptilia fraxinella (Lepidoptera: Gracillariidae). Frontiers in Ecology and Evolution, 2021, 9, .	2.2	1
97	Seasonal emergence patterns of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in the Peace River region, Alberta, Canada. Canadian Entomologist, 2021, 153, 222-236.	0.8	1
98	Wing polymorphisms of Pterostichus melanarius (Coleoptera: Carabidae) (Illiger, 1978) in Alberta pulse crops. Alberta Academic Review, 2019, 2, 23-24.	0.0	1
99	Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, <i>Dendroctonus ponderosae</i> Hopkins (Coleoptera: Curculionidae). PeerJ, 2021, 9, e12382.	2.0	1
100	Nutrition, sex and season contribute to variation in fat and glycerol levels in the longâ€lived moth <i>Caloptilia fraxinella</i> . Physiological Entomology, 2016, 41, 67-73.	1.5	0
101	The influence of Canadian research on semiochemical-based management of forest insect pests in Canada—ERRATUM. Canadian Entomologist, 2017, 149, 139-139.	0.8	0
102	Bugs 101: Insect–Human Interactions; Developing and Implementing a General Entomology MOOC (Massive Open Online Course). American Entomologist, 2020, 66, 55-60.	0.2	0
103	OUP accepted manuscript. Environmental Entomology, 2022, , .	1.4	0