Fei-Long Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7340377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System. Cell, 2013, 152, 417-429.	28.9	407
2	The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates. Cell, 2011, 144, 353-363.	28.9	275
3	Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability. Cell, 2014, 159, 1538-1548.	28.9	221
4	Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes. Cell, 2015, 163, 947-959.	28.9	140
5	Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell, 2015, 163, 1124-1137.	28.9	136
6	AID Recognizes Structured DNA for Class Switch Recombination. Molecular Cell, 2017, 67, 361-373.e4.	9.7	136
7	Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells. Developmental Cell, 2018, 45, 526-536.e5.	7.0	123
8	Transcriptional landscape of the human cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3473-3478.	7.1	110
9	Phosphatidylinositol 3-kinase l´ blockade increases genomic instability in B cells. Nature, 2017, 542, 489-493.	27.8	105
10	Pooled CRISPR screening identifies m ⁶ A as a positive regulator of macrophage activation. Science Advances, 2021, 7, .	10.3	102
11	Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature, 2015, 525, 134-139.	27.8	93
12	The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nature Cell Biology, 2018, 20, 320-331.	10.3	86
13	Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere replication in vivo. Nucleic Acids Research, 2006, 34, 407-416.	14.5	65
14	Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators. PLoS Genetics, 2013, 9, e1003208.	3.5	52
15	Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Research, 2021, 49, 8732-8742.	14.5	52
16	<i>CandidaÂalbicans</i> , a distinctive fungal model for cellular aging study. Aging Cell, 2008, 7, 746-757.	6.7	42
17	ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Research, 2020, 30, 732-744.	12.0	41
18	Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. EMBO Journal, 2009, 28, 1466-1478.	7.8	34

Fei-Long Meng

#	Article	IF	CITATIONS
19	SWR1 Complex Poises Heterochromatin Boundaries for Antisilencing Activity Propagation. Molecular and Cellular Biology, 2010, 30, 2391-2400.	2.3	34
20	Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. Journal of Experimental Medicine, 2021, 218, .	8.5	29
21	Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody ExÂVivo Affinity Maturation. Cell Reports, 2018, 25, 884-892.e3.	6.4	28
22	Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Advances in Immunology, 2019, 141, 51-103.	2.2	26
23	AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Reports, 2021, 34, 108713.	6.4	23
24	Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae. PLoS Genetics, 2009, 5, e1000535.	3.5	17
25	A systematic dissection of the epigenomic heterogeneity of lung adenocarcinoma reveals two different subclasses with distinct prognosis and core regulatory networks. Genome Biology, 2021, 22, 156.	8.8	17
26	Uncovering a conserved vulnerability site in SARS oVâ€⊋ by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
27	Genome integrity and neurogenesis of postnatal hippocampal neural stem/progenitor cells require a unique regulator Filia. Science Advances, 2020, 6, .	10.3	14
28	Sua5p is required for telomere recombination in Saccharomyces cerevisiae. Cell Research, 2010, 20, 495-498.	12.0	13
29	The 3′-flap endonuclease XPF-ERCC1 promotes alternative end joining and chromosomal translocation during B cell class switching. Cell Reports, 2021, 36, 109756.	6.4	13
30	The development of neutralizing antibodies against SARS-CoV-2 and their common features. Journal of Molecular Cell Biology, 2021, 12, 980-986.	3.3	13
31	lg Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences. Journal of Immunology, 2022, 208, 143-154.	0.8	13
32	Parp3 promotes long-range end joining in murine cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10076-10081.	7.1	11
33	Generation of Genomic Alteration from Cytidine Deamination. Advances in Experimental Medicine and Biology, 2018, 1044, 49-64.	1.6	11
34	REV7 is required for processing AID initiated DNA lesions in activated B cells. Nature Communications, 2020, 11, 2812.	12.8	9
35	Targeting HSPA1A in ARID2-deficient lung adenocarcinoma. National Science Review, 2021, 8, nwab014.	9.5	9
36	Telomere Recombination Preferentially Occurs at Short Telomeres in Telomerase-Null Type II Survivors. PLoS ONE, 2014, 9, e90644.	2.5	8

Fei-Long Meng

#	Article	IF	CITATIONS
37	Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes. Nucleic Acids Research, 2020, 48, 12792-12803.	14.5	8
38	UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution. Journal of the American Chemical Society, 2022, 144, 1323-1331.	13.7	8
39	B cell receptor signatures associated with strong and poor SARS-CoV-2 vaccine responses. Emerging Microbes and Infections, 2022, 11, 452-464.	6.5	8
40	Câ€ŧerminal deletionâ€induced condensation sequesters AID from IgH targets in immunodeficiency. EMBO Journal, 2022, 41, e109324.	7.8	5
41	A Rapid Embryonic Stem Cell–Based Mouse Model for B-cell Lymphomas Driven by Epstein–Barr Virus Protein LMP1. Cancer Immunology Research, 2015, 3, 641-649.	3.4	3
42	Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. Genome Instability & Disease, 2021, 2, 115-125.	1.1	3
43	New Chromatin Run-On Reaction Enables Global Mapping of Active RNA Polymerase Locations in an Enrichment-free Manner. ACS Chemical Biology, 2022, 17, 768-775.	3.4	3
44	PI3Kdelta Inhibitors Increase Genomic Instability By Upregulating Aid Expression. Blood, 2015, 126, 164-164.	1.4	1
45	Evaluation of a Novel Missense Activation-Induced Deaminase AID Mutation in a Child with Hyper IgM Syndrome: Is it a Pathogenic Mutation?. Journal of Allergy and Clinical Immunology, 2014, 133, AB70.	2.9	0
46	The Mechanism of IgH Class Switch Recombination. , 2015, , 345-362.		0
47	Abstract A174: Mechanistic elucidation of activation-induced deaminase (AID) in immunity and cancer. , 2016, , .		0
48	Abstract A180: Topologically associated domains genome-wide restrict the off-target activity of recombination activating gene 1/2 endonuclease. , 2016, , .		0
49	AMPK-Mediated Phosphorylation on 53BP1 Promotes NHEJ. SSRN Electronic Journal, 0, , .	0.4	0