Hae Kyung Im

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7340318/publications.pdf

Version: 2024-02-01

69 papers

20,740 citations

36 h-index 70 g-index

107 all docs

107
docs citations

107 times ranked 37982 citing authors

#	Article	IF	CITATIONS
1	The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 2013, 45, 580-585.	21.4	6,815
2	The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 2015, 348, 648-660.	12.6	4,659
3	A gene-based association method for mapping traits using reference transcriptome data. Nature Genetics, 2015, 47, 1091-1098.	21.4	1,473
4	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
5	Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications, 2018, 9, 1825.	12.8	748
6	Opportunities and challenges for transcriptome-wide association studies. Nature Genetics, 2019, 51, 592-599.	21.4	592
7	Annotation-free quantification of RNA splicing using LeafCutter. Nature Genetics, 2018, 50, 151-158.	21.4	520
8	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	21.4	426
9	The impact of sex on gene expression across human tissues. Science, 2020, 369, .	12.6	329
10	Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. Ecology, 2009, 90, 3554-3565.	3.2	295
11	Effect of predicted protein-truncating genetic variants on the human transcriptome. Science, 2015, 348, 666-669.	12.6	252
12	Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genetics, 2019, 15, e1007889.	3.5	239
13	Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respiratory Medicine, the, 2019, 7, 509-522.	10.7	238
14	Cell type–specific genetic regulation of gene expression across human tissues. Science, 2020, 369, .	12.6	210
15	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	21.4	154
16	Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biology, 2021, 22, 49.	8.8	150
17	Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues. PLoS Genetics, 2016, 12, e1006423.	3.5	143
18	Population differences in microRNA expression and biological implications. RNA Biology, 2011, 8, 692-701.	3.1	138

#	Article	IF	CITATIONS
19	Genetic architecture of gene expression traits across diverse populations. PLoS Genetics, 2018, 14, e1007586.	3.5	117
20	Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science, 2019, 366, 351-356.	12.6	99
21	Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell, 2021, 184, 2633-2648.e19.	28.9	94
22	Genetic Architecture of MicroRNA Expression: Implications for the Transcriptome and Complex Traits. American Journal of Human Genetics, 2012, 90, 1046-1063.	6.2	92
23	Transcriptomic signatures across human tissues identify functional rare genetic variation. Science, 2020, 369, .	12.6	89
24	On Sharing Quantitative Trait GWAS Results in an Era of Multiple-omics Data and the Limits of Genomic Privacy. American Journal of Human Genetics, 2012, 90, 591-598.	6.2	87
25	Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. Nature Communications, 2018, 9, 2976.	12.8	85
26	PhenomeXcan: Mapping the genome to the phenome through the transcriptome. Science Advances, 2020, 6, .	10.3	83
27	ExprTarget: An Integrative Approach to Predicting Human MicroRNA Targets. PLoS ONE, 2010, 5, e13534.	2.5	80
28	Targeting the Urokinase Plasminogen Activator Receptor Inhibits Ovarian Cancer Metastasis. Clinical Cancer Research, 2011, 17, 459-471.	7.0	69
29	A vast resource of allelic expression data spanning human tissues. Genome Biology, 2020, 21, 234.	8.8	68
30	Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations. American Journal of Human Genetics, 2021, 108, 25-35.	6.2	67
31	Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. Genome Biology, 2020, 21, 233.	8.8	64
32	Platinum Sensitivity–Related Germline Polymorphism Discovered via a Cell-Based Approach and Analysis of Its Association with Outcome in Ovarian Cancer Patients. Clinical Cancer Research, 2011, 17, 5490-5500.	7.0	57
33	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.9	54
34	Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx. American Journal of Human Genetics, 2016, 98, 697-708.	6.2	51
35	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.6	47
36	PTWAS: investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. Genome Biology, 2020, 21, 232.	8.8	46

#	Article	IF	CITATIONS
37	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	6.4	44
38	Germline polymorphisms discovered via a cell-based, genome-wide approach predict platinum response in head and neck cancers. Translational Research, 2011, 157, 265-272.	5.0	42
39	Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries. Genome Biology, 2022, 23, 23.	8.8	42
40	Poly-Omic Prediction of Complex Traits: OmicKriging. Genetic Epidemiology, 2014, 38, 402-415.	1.3	41
41	A multi-stage genome-wide association study of uterine fibroids in African Americans. Human Genetics, 2017, 136, 1363-1373.	3.8	39
42	Genetic Variation That Predicts Platinum Sensitivity Reveals the Role of miR-193b* in Chemotherapeutic Susceptibility. Molecular Cancer Therapeutics, 2012, 11, 2054-2061.	4.1	35
43	A Trans-Ethnic Genome-Wide Association Study of Uterine Fibroids. Frontiers in Genetics, 2019, 10, 511.	2.3	32
44	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5.3	31
45	Whole-genome studies identify solute carrier transporters in cellular susceptibility to paclitaxel. Pharmacogenetics and Genomics, 2012, 22, 498-507.	1.5	28
46	Fineâ€mapping and QTL tissueâ€sharing information improves the reliability of causal gene identification. Genetic Epidemiology, 2020, 44, 854-867.	1.3	28
47	Semiparametric Estimation of Spectral Density With Irregular Observations. Journal of the American Statistical Association, 2007, 102, 726-735.	3.1	26
48	Mixed Effects Modeling of Proliferation Rates in Cell-Based Models: Consequence for Pharmacogenomics and Cancer. PLoS Genetics, 2012, 8, e1002525.	3.5	26
49	Identification of novel germline polymorphisms governing capecitabine sensitivity. Cancer, 2012, 118, 4063-4073.	4.1	25
50	CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses. Nature Communications, 2020, 11, 4208.	12.8	23
51	A scalable unified framework of total and allele-specific counts for cis-QTL, fine-mapping, and prediction. Nature Communications, 2021, 12, 1424.	12.8	23
52	Imputed gene associations identify replicable <i>trans</i> eacting genes enriched in transcription pathways and complex traits. Genetic Epidemiology, 2019, 43, 596-608.	1.3	19
53	MicroRNA biogenesis and cellular proliferation. Translational Research, 2015, 166, 145-151.	5.0	18
54	sn-spMF: matrix factorization informs tissue-specific genetic regulation of gene expression. Genome Biology, 2020, 21, 235.	8.8	18

#	Article	IF	CITATIONS
55	An eQTL-based method identifies CTTN and ZMAT3 as pemetrexed susceptibility markers. Human Molecular Genetics, 2012, 21, 1470-1480.	2.9	16
56	Trans-ethnic predicted expression genome-wide association analysis identifies a gene for estrogen receptor-negative breast cancer. PLoS Genetics, 2017, 13, e1006727.	3.5	14
57	Transcriptome prediction performance across machine learning models and diverse ancestries. Human Genetics and Genomics Advances, 2021, 2, 100019.	1.7	14
58	Protein prediction for trait mapping in diverse populations. PLoS ONE, 2022, 17, e0264341.	2.5	13
59	Space–time modeling of 20 years of daily air temperature in the Chicago metropolitan region. Environmetrics, 2009, 20, 494-511.	1.4	12
60	Functionally oriented analysis of cardiometabolic traits in a trans-ethnic sample. Human Molecular Genetics, 2019, 28, 1212-1224.	2.9	12
61	Functional consequences of PRPF39 on distant genes and cisplatin sensitivity. Human Molecular Genetics, 2012, 21, 4348-4355.	2.9	7
62	Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program. American Journal of Human Genetics, 2022, 109, 857-870.	6.2	7
63	ukbREST: efficient and streamlined data access for reproducible research in large biobanks. Bioinformatics, 2019, 35, 1971-1973.	4.1	6
64	Pleiotropy-guided transcriptome imputation from normal and tumor tissues identifies candidate susceptibility genes for breast and ovarian cancer. Human Genetics and Genomics Advances, 2021, 2, 100042.	1.7	6
65	Comprehensive Evaluation of the Contribution of X Chromosome Genes to Platinum Sensitivity. Molecular Cancer Therapeutics, 2011, 10, 472-480.	4.1	5
66	C. elegansand mutants with chronic nicotine exposure as a novel model of cancer phenotype. Cancer Biology and Therapy, 2016, 17, 91-103.	3.4	3
67	Fine-mapping studies distinguish genetic risks for childhood- and adult-onset asthma in the HLA region. Genome Medicine, 2022, 14 , .	8.2	2
68	Proximity effect of thin films on superconducting substrates. Physical Review B, 1994, 50, 10117-10121.	3.2	1
69	Analysis of Genetically Regulated Gene Expression Identifies a Trauma Type Specific PTSD Gene, SNRNP35. SSRN Electronic Journal, 0, , .	0.4	O