Philip J Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7339861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auto-Regulation of Transcription and Translation: Oscillations, Excitability and Intermittency. Biomolecules, 2021, 11, 1566.	4.0	2
2	Cell cycle regulation of oscillations yields coupling of growth and form in a computational model of the presomitic mesoderm. Journal of Theoretical Biology, 2019, 481, 75-83.	1.7	1
3	<scp>CDK</scp> 1 and <scp>CDK</scp> 2 regulate <scp>NICD</scp> 1 turnover and the periodicity of the segmentation clock. EMBO Reports, 2019, 20, e46436.	4.5	32
4	Temporal Ordering of Dynamic Expression Data from Detailed Spatial Expression Maps. Journal of Visualized Experiments, 2017, , .	0.3	0
5	HIV-1 capsid uncoating initiates after the first strand transfer of reverse transcription. Retrovirology, 2016, 13, 58.	2.0	69
6	DNA double-strand break repair: a theoretical framework and its application. Journal of the Royal Society Interface, 2016, 13, 20150679.	3.4	11
7	Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations. Cell, 2015, 161, 277-290.	28.9	195
8	Multiscale modelling of intestinal crypt organization and carcinogenesis. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2563-2585.	3.3	21
9	A balance of positive and negative regulators determines the pace of the segmentation clock. ELife, 2015, 4, e05842.	6.0	27
10	Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development (Cambridge), 2014, 141, 4806-4816.	2.5	50
11	Regenerative Hair Waves in Aging Mice and Extra-Follicular Modulators Follistatin, Dkk1, and Sfrp4. Journal of Investigative Dermatology, 2014, 134, 2086-2096.	0.7	80
12	Modelling Delta-Notch perturbations during zebrafish somitogenesis. Developmental Biology, 2013, 373, 407-421.	2.0	14
13	Modelling Oscillator Synchronisation During Vertebrate Axis Segmentation. Springer Proceedings in Mathematics, 2013, , 95-105.	0.5	2
14	Modelling Hair Follicle Growth Dynamics as an Excitable Medium. PLoS Computational Biology, 2012, 8, e1002804.	3.2	22
15	Classifying general nonlinear force laws in cell-based models via the continuum limit. Physical Review E, 2012, 85, 021921.	2.1	33
16	Understanding hair follicle cycling: a systems approach. Current Opinion in Genetics and Development, 2012, 22, 607-612.	3.3	30
17	The clock and wavefront model revisited. Journal of Theoretical Biology, 2011, 283, 227-238.	1.7	50
18	Comparing a discrete and continuum model of the intestinal crypt. Physical Biology, 2011, 8, 026011.	1.8	38

#	Article	IF	CITATIONS
19	Modelling Spatially Regulated β-Catenin Dynamics and Invasion inÂIntestinal Crypts. Biophysical Journal, 2010, 99, 716-725.	0.5	66
20	From a discrete to a continuum model of cell dynamics in one dimension. Physical Review E, 2009, 80, 031912.	2.1	78
21	Chaste: A test-driven approach to software development for biological modelling. Computer Physics Communications, 2009, 180, 2452-2471.	7.5	207