Ziv Gan-Or

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7339736/publications.pdf Version: 2024-02-01

7IV CANLOD

#	Article	IF	CITATIONS
1	<i>De novo DHDDS</i> variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain, 2022, 145, 208-223.	7.6	15
2	RIC3 variants are not associated with Parkinson's disease in large European, Latin American, or East Asian cohorts. Neurobiology of Aging, 2022, 109, 264-268.	3.1	0
3	Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. Journal of Parkinson's Disease, 2022, 12, 117-128.	2.8	5
4	Coding and Noncoding Variation in <scp><i>LRRK2</i></scp> and Parkinson's Disease Risk. Movement Disorders, 2022, 37, 95-105.	3.9	14
5	New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin. Neuropharmacology, 2022, 202, 108822.	4.1	33
6	Genetic Stratification of Ageâ€Dependent Parkinson's Disease Risk by Polygenic Hazard Score. Movement Disorders, 2022, 37, 62-69.	3.9	13
7	Rare PSAP Variants and Possible Interaction with GBA in REM Sleep Behavior Disorder. Journal of Parkinson's Disease, 2022, 12, 333-340.	2.8	3
8	Plasma Glucosylsphingosine in <scp> <i>GBA1</i> </scp> Mutation Carriers with and without Parkinson's Disease. Movement Disorders, 2022, 37, 416-421.	3.9	22
9	Heterozygous De Novo <scp><i>KPNA3</i></scp> Mutations Cause Complex Hereditary Spastic Paraplegia. Annals of Neurology, 2022, 91, 730-732.	5.3	1
10	Reply to: No Evidence that Glucosylsphingosine Is a Biomarker for Parkinson Disease. Movement Disorders, 2022, 37, 654-654.	3.9	2
11	Genetics of Non-Motor Symptoms of Parkinson's Disease. , 2022, , 199-211.		0
12	Genetic, structural and clinical analysis of spastic paraplegia 4. Parkinsonism and Related Disorders, 2022, 98, 62-69.	2.2	7
13	Rapid eye movement sleep behaviour disorder: Past, present, and future. Journal of Sleep Research, 2022, 31, e13612.	3.2	12
14	Comprehensive Analysis of Familial Parkinsonism Genes in Rapidâ€Eyeâ€Movement Sleep Behavior Disorder. Movement Disorders, 2021, 36, 235-240.	3.9	11
15	Analysis of Heterozygous <scp> <i>PRKN</i> </scp> Variants and Copyâ€Number Variations in Parkinson's Disease. Movement Disorders, 2021, 36, 178-187.	3.9	39
16	Lack of evidence for association of UQCRC1 with Parkinson's disease in Europeans. Neurobiology of Aging, 2021, 101, 297.e1-297.e4.	3.1	7
17	Association of the CD2AP locus with cognitive functioning among middle-aged individuals with a family history of Alzheimer's disease. Neurobiology of Aging, 2021, 101, 50-56.	3.1	4
18	Targeted sequencing of Parkinson's disease loci genes highlights <i>SYT11, FGF20</i> and other associations. Brain, 2021, 144, 462-472.	7.6	31

#	Article	IF	CITATIONS
19	Replication assessment of NUS1 variants in Parkinson's disease. Neurobiology of Aging, 2021, 101, 300.e1-300.e3.	3.1	3
20	Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiology of Aging, 2021, 97, 148.e17-148.e24.	3.1	16
21	Genetic and Epidemiological Study of Adult Ataxia and Spastic Paraplegia in Eastern Quebec. Canadian Journal of Neurological Sciences, 2021, 48, 655-665.	0.5	3
22	Cytokines and Gaucher Biomarkers in Glucocerebrosidase Carriers with and Without Parkinson Disease. Movement Disorders, 2021, 36, 1451-1455.	3.9	17
23	Evidence for Nonâ€Mendelian Inheritance in Spastic Paraplegia 7. Movement Disorders, 2021, 36, 1664-1675.	3.9	11
24	LRRK2 p.M1646T is associated with glucocerebrosidase activity and with Parkinson's disease. Neurobiology of Aging, 2021, 103, 142.e1-142.e5.	3.1	11
25	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
26	<scp><i>GCH1</i></scp> mutations in hereditary spastic paraplegia. Clinical Genetics, 2021, 100, 51-58.	2.0	5
27	Common Xâ€Chromosome Variants Are Associated with Parkinson Disease Risk. Annals of Neurology, 2021, 90, 22-34.	5.3	28
28	Type 2 Diabetes as a Determinant of Parkinson's Disease Risk and Progression. Movement Disorders, 2021, 36, 1420-1429.	3.9	108
29	Heritability Enrichment Implicates Microglia in Parkinson's Disease Pathogenesis. Annals of Neurology, 2021, 89, 942-951.	5.3	35
30	Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiology of Aging, 2021, 100, 119.e7-119.e13.	3.1	19
31	No Evidence for a Causal Relationship Between Cancers and Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 801-809.	2.8	3
32	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
33	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5.3	29
34	Lack of Causal Effects or Genetic Correlation between Restless Legs Syndrome and Parkinson's Disease. Movement Disorders, 2021, 36, 1967-1972.	3.9	3
35	Occurrence of Amyotrophic Lateral Sclerosis in Type 1 Gaucher Disease. Neurology: Genetics, 2021, 7, e600.	1.9	3
36	Analysis of PTRHD1 common and rare variants in European patients with Parkinson's disease. Neurobiology of Aging, 2021, 107, 178-180.	3.1	1

#	Article	IF	CITATIONS
37	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	10.8	41
38	Common and rare variants in HFE are not associated with Parkinson's disease in Europeans. Neurobiology of Aging, 2021, 107, 174-177.	3.1	1
39	Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurology, The, 2021, 20, 671-684.	10.2	116
40	Clinical and Genetic Analysis of Costa Rican Patients With Parkinson's Disease. Frontiers in Neurology, 2021, 12, 656342.	2.4	4
41	Fine mapping of the HLA locus in Parkinson's disease in Europeans. Npj Parkinson's Disease, 2021, 7, 84.	5.3	31
42	αâ€5ynuclein (<scp><i>SNCA</i></scp>) <scp>A30G</scp> Mutation as a Cause of a Complex Phenotype Without Parkinsonism. Movement Disorders, 2021, 36, 2209-2212.	3.9	1
43	<i>SORL1</i> mutation in a Greek family with Parkinson's disease and dementia. Annals of Clinical and Translational Neurology, 2021, 8, 1961-1969.	3.7	7
44	Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism and Related Disorders, 2021, 90, 142-154.	2.2	26
45	Novel Associations of <i>BST1</i> and <i>LAMP3</i> With REM Sleep Behavior Disorder. Neurology, 2021, 96, e1402-e1412.	1.1	12
46	Mendelian Randomization Studies: A Path to Better Understand Sex and Gender Differences in Parkinson's Disease?. Movement Disorders, 2021, 36, 2220-2222.	3.9	2
47	The commercial genetic testing landscape for Parkinson's disease. Parkinsonism and Related Disorders, 2021, 92, 107-111.	2.2	16
48	Hereditary spastic paraplegia initially diagnosed as cerebral palsy. Clinical Parkinsonism & Related Disorders, 2021, 5, 100114.	0.9	5
49	Brain atrophy progression in Parkinson's disease is shaped by connectivity and local vulnerability. Brain Communications, 2021, 3, fcab269.	3.3	22
50	Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. ELife, 2021, 10, .	6.0	44
51	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
52	Transcriptome analysis highlights common pathways between Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease. Alzheimer's and Dementia, 2021, 17, e050014.	0.8	0
53	Genetic and epidemiological characterization of restless legs syndrome in Québec. Sleep, 2020, 43,	1.1	9
54	Genetic, Structural, and Functional Evidence Link <i>TMEM175</i> to Synucleinopathies. Annals of Neurology, 2020, 87, 139-153.	5.3	65

#	Article	IF	CITATIONS
55	Decreased Penetrance of Parkinson's Disease in Elderly Carriers of Glucocerebrosidase Gene L444P/R Mutations: A Communityâ€Based 10‥ear Longitudinal Study. Movement Disorders, 2020, 35, 672-678.	3.9	8
56	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	7.6	149
57	Autophagy lysosomal pathway dysfunction in Parkinson's disease; evidence from human genetics. Parkinsonism and Related Disorders, 2020, 73, 60-71.	2.2	85
58	Genetic variability and potential effects on clinical trial outcomes: perspectives in Parkinson's disease. Journal of Medical Genetics, 2020, 57, 331-338.	3.2	36
59	No genetic evidence for involvement of alcohol dehydrogenase genes in risk for Parkinson's disease. Neurobiology of Aging, 2020, 87, 140.e19-140.e22.	3.1	10
60	Precision medicine in Parkinson's disease patients with LRRK2 and GBA risk variants – Let's get even more personal. Translational Neurodegeneration, 2020, 9, 39.	8.0	29
61	Assessing non-Mendelian inheritance in inherited axonopathies. Genetics in Medicine, 2020, 22, 2114-2119.	2.4	15
62	GBA variation and susceptibility to multiple system atrophy. Parkinsonism and Related Disorders, 2020, 77, 64-69.	2.2	12
63	Lack of evidence for genetic association of saposins A, B, C and D with Parkinson's disease. Brain, 2020, 143, e72-e72.	7.6	11
64	Longitudinal Measurements of Glucocerebrosidase activity in Parkinson's patients. Annals of Clinical and Translational Neurology, 2020, 7, 1816-1830.	3.7	23
65	<i>GBA</i> variants in REM sleep behavior disorder. Neurology, 2020, 95, e1008-e1016.	1.1	45
66	Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel functional pathways in Parkinson disease. Acta Neuropathologica, 2020, 140, 341-358.	7.7	68
67	Disease modification and biomarker development in Parkinson disease. Neurology, 2020, 94, 481-494.	1.1	103
68	Fineâ€Mapping of <i>SNCA</i> in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies. Annals of Neurology, 2020, 87, 584-598.	5.3	39
69	The Quebec Parkinson Network: A Researcher-Patient Matching Platform and Multimodal Biorepository. Journal of Parkinson's Disease, 2020, 10, 301-313.	2.8	35
70	Clinical and genetic analysis of <i>ATP13A2</i> in hereditary spastic paraplegia expands the phenotype. Molecular Genetics & Genomic Medicine, 2020, 8, e1052.	1.2	20
71	Comprehensive assessment of PINK1 variants in Parkinson's disease. Neurobiology of Aging, 2020, 91, 168.e1-168.e5.	3.1	32
72	Variants in the Niemann–Pick type C gene NPC1 are not associated with Parkinson's disease. Neurobiology of Aging, 2020, 93, 143.e1-143.e4.	3.1	13

#	Article	IF	CITATIONS
73	Age at Onset of Parkinson's Disease Among Ashkenazi Jewish Patients: Contribution of Environmental Factors, LRRK2 p.G2019S and GBA p.N370S Mutations. Journal of Parkinson's Disease, 2020, 10, 1123-1132.	2.8	21
74	Analysis of common and rare <i>VPS13C</i> variants in late-onset Parkinson disease. Neurology: Genetics, 2020, 6, 385.	1.9	19
75	SMPD1 variants do not have a major role in rapid eye movement sleep behavior disorder. Neurobiology of Aging, 2020, 93, 142.e5-142.e7.	3.1	4
76	Increased yield of full GBA sequencing in Ashkenazi Jews with Parkinson's disease. European Journal of Medical Genetics, 2019, 62, 65-69.	1.3	49
77	Exposure to Pesticides and Welding Hastens the Age-at-Onset of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2019, 46, 711-716.	0.5	9
78	The Parkinson's Disease Mendelian Randomization Research Portal. Movement Disorders, 2019, 34, 1864-1872.	3.9	50
79	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
80	ARSA variants in α-synucleinopathies. Brain, 2019, 142, e70-e70.	7.6	17
81	Classification of <i>CBA</i> Variants and Their Effects in Synucleinopathies. Movement Disorders, 2019, 34, 1581-1582.	3.9	8
82	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population‧pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
83	SPTAN1 variants as a potential cause for autosomal recessive hereditary spastic paraplegia. Journal of Human Genetics, 2019, 64, 1145-1151.	2.3	15
84	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
85	The landscape of Parkin variants reveals pathogenic mechanisms and therapeutic targets in Parkinson's disease. Human Molecular Genetics, 2019, 28, 2811-2825.	2.9	61
86	Glucocerebrosidase mutations and phenoconversion of REM sleep behavior disorder to parkinsonism and Related Disorders, 2019, 65, 230-233.	2.2	26
87	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	3.9	258
88	Truncating Mutations in UBAP1 Cause Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2019, 104, 767-773.	6.2	39
89	<i>SMPD1</i> mutations, activity, and αâ€synuclein accumulation in Parkinson's disease. Movement Disorders, 2019, 34, 526-535.	3.9	81
90	Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain, 2019, 142, 744-759.	7.6	636

#	Article	IF	CITATIONS
91	Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92, 329-337.	1.1	194
92	Common and rare GCH1 variants are associated with Parkinson'sÂdisease. Neurobiology of Aging, 2019, 73, 231.e1-231.e6.	3.1	20
93	Dystonia; a roadmap is needed for future genetic studies. Parkinsonism and Related Disorders, 2019, 58, 9-11.	2.2	1
94	Carriers of both GBA and LRRK2 mutations, compared to carriers of either, in Parkinson's disease: Risk estimates and genotype-phenotype correlations. Parkinsonism and Related Disorders, 2019, 62, 179-184.	2.2	58
95	CAPN1 mutations: Expanding the CAPN1-related phenotype: From hereditary spastic paraparesis to spastic ataxia. European Journal of Medical Genetics, 2019, 62, 103605.	1.3	21
96	Genetics of REM Sleep Behavior Disorder. , 2019, , 589-609.		2
97	Longstanding disease-free survival in idiopathic REM sleep behavior disorder: Is neurodegeneration inevitable?. Parkinsonism and Related Disorders, 2018, 54, 99-102.	2.2	35
98	Alpha galactosidase A activity in Parkinson's disease. Neurobiology of Disease, 2018, 112, 85-90.	4.4	56
99	Sleep disorders and Parkinson disease; lessons from genetics. Sleep Medicine Reviews, 2018, 41, 101-112.	8.5	35
100	TOX3 Variants Are Involved in Restless Legs Syndrome and Parkinson's Disease with Opposite Effects. Journal of Molecular Neuroscience, 2018, 64, 341-345.	2.3	11
101	POLR3A variants in hereditary spastic paraplegia and ataxia. Brain, 2018, 141, e1-e1.	7.6	17
102	Association study of essential tremor genetic loci in Parkinson'sÂdisease. Neurobiology of Aging, 2018, 66, 178.e13-178.e15.	3.1	9
103	Insufficient evidence for pathogenicity of SNCA His50Cln (H50Q) in Parkinson's disease. Neurobiology of Aging, 2018, 64, 159.e5-159.e8.	3.1	30
104	Genome-wide association analysis identifies new candidate risk loci for familial intracranial aneurysm in the French-Canadian population. Scientific Reports, 2018, 8, 4356.	3.3	12
105	LRRK2 protective haplotype and full sequencing study in REM sleep behavior disorder. Parkinsonism and Related Disorders, 2018, 52, 98-101.	2.2	25
106	Tandem mass spectrometry assay of β-glucocerebrosidase activity in dried blood spots eliminates false positives detected in fluorescence assay. Molecular Genetics and Metabolism, 2018, 123, 135-139.	1.1	12
107	Screening of novel restless legs syndrome–associated genes in French-Canadian families. Neurology: Genetics, 2018, 4, e296.	1.9	7
108	Triple A syndrome presenting as complicated hereditary spastic paraplegia. Molecular Genetics & Genomic Medicine, 2018, 6, 1134-1139.	1.2	11

#	Article	IF	CITATIONS
109	Parkinson's disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism and Related Disorders, 2018, 55, 45-49.	2.2	90
110	Full sequencing and haplotype analysis of <i>MAPT</i> in Parkinson's disease and rapid eye movement sleep behavior disorder. Movement Disorders, 2018, 33, 1016-1020.	3.9	31
111	Sequencing of the GBA coactivator, Saposin C, in Parkinson disease. Neurobiology of Aging, 2018, 72, 187.e1-187.e3.	3.1	16
112	Frequency of Loss of Function Variants in <i>LRRK2</i> in Parkinson Disease. JAMA Neurology, 2018, 75, 1416.	9.0	66
113	GBA-Associated Parkinson's Disease and Other Synucleinopathies. Current Neurology and Neuroscience Reports, 2018, 18, 44.	4.2	106
114	The <i>GBA</i> p.Trp378Gly mutation is a probable French anadian founder mutation causing Gaucher disease and synucleinopathies. Clinical Genetics, 2018, 94, 339-345.	2.0	9
115	RIC3 variants are not associated with Parkinson's disease in French-Canadians and French. Neurobiology of Aging, 2017, 53, 194.e9-194.e11.	3.1	5
116	Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain, 2017, 140, e32-e32.	7.6	5
117	<scp><i>KCNA2</i></scp> mutations are rare in hereditary spastic paraplegia. Annals of Neurology, 2017, 81, 325-326.	5.3	0
118	Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurology: Genetics, 2017, 3, e122.	1.9	82
119	Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurology, The, 2017, 16, 898-907.	10.2	191
120	The dementia-associated APOE ε4 allele is not associated with rapid eye movement sleep behavior disorder. Neurobiology of Aging, 2017, 49, 218.e13-218.e15.	3.1	25
121	Case–Control and Familyâ€Based Association Study of Specific <i><scp>PTPRD</scp></i> Variants in Restless Legs Syndrome. Movement Disorders Clinical Practice, 2016, 3, 460-464.	1.5	1
122	The role of the melanoma gene MC1R in Parkinson disease and REM sleep behavior disorder. Neurobiology of Aging, 2016, 43, 180.e7-180.e13.	3.1	12
123	Mutations in CAPN1 Cause Autosomal-Recessive Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2016, 98, 1038-1046.	6.2	96
124	De novo <i>FUS</i> P525L mutation in Juvenile amyotrophic lateral sclerosis with dysphonia and diplopia. Neurology: Genetics, 2016, 2, e63.	1.9	28
125	SEPT14 Is Associated with a Reduced Risk for Parkinson's Disease and Expressed in Human Brain. Journal of Molecular Neuroscience, 2016, 59, 343-350.	2.3	13
126	A 23 years follow-up study identifies GLUT1 deficiency syndrome initially diagnosed as complicated hereditary spastic paraplegia. European Journal of Medical Genetics, 2016, 59, 564-568.	1.3	7

#	Article	IF	CITATIONS
127	<i>GBA</i> p.T369M substitution in Parkinson disease: Polymorphism or association? A meta-analysis. Neurology: Genetics, 2016, 2, e104.	1.9	74
128	Calpain 1 in neurodegeneration: a therapeutic target?. Lancet Neurology, The, 2016, 15, 1118.	10.2	8
129	RNF213 Is Associated with Intracranial Aneurysms in the French-Canadian Population. American Journal of Human Genetics, 2016, 99, 1072-1085.	6.2	49
130	Dynamics of microtubules and their associated proteins: Recent insights and clinical implications. Neurology, 2016, 87, 2173-2173.	1.1	3
131	SCARB2 variants and glucocerebrosidase activity in Parkinson's disease. Npj Parkinson's Disease, 2016, 2, .	5.3	36
132	Analysis of DNAJC13 mutations in French-Canadian/French cohort of Parkinson's disease. Neurobiology of Aging, 2016, 45, 212.e13-212.e17.	3.1	38
133	Genetic and Clinical Predictors of Deep Brain Stimulation in Youngâ€Onset Parkinson's Disease. Movement Disorders Clinical Practice, 2016, 3, 465-471.	1.5	37
134	Replication study of MATR3 in familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2016, 37, 209.e17-209.e21.	3.1	53
135	Down-regulation of B cell-related genes in peripheral blood leukocytes of Parkinson's disease patients with and without GBA mutations. Molecular Genetics and Metabolism, 2016, 117, 179-185.	1.1	21
136	GBA mutations are associated with Rapid Eye Movement Sleep Behavior Disorder. Annals of Clinical and Translational Neurology, 2015, 2, 941-945.	3.7	117
137	Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy, 2015, 11, 1443-1457.	9.1	217
138	Analysis of functional GLO1 variants in the BTBD9 locus and restless legs syndrome. Sleep Medicine, 2015, 16, 1151-1155.	1.6	20
139	PARK16 haplotypes and the importance of protective genetic factors in Parkinson's disease. Journal of Human Genetics, 2015, 60, 461-462.	2.3	1
140	Glucocerebrosidase activity in Parkinson's disease with and without <i>GBA</i> mutations. Brain, 2015, 138, 2648-2658.	7.6	326
141	Differential effects of severe vs mild <i>GBA</i> mutations on Parkinson disease. Neurology, 2015, 84, 880-887.	1.1	277
142	LRRK2 mutations in Parkinson disease; a sex effect or lack thereof? A meta-analysis. Parkinsonism and Related Disorders, 2015, 21, 778-782.	2.2	30
143	A homozygous mutation in <i><scp>SLC1A4</scp></i> in siblings with severe intellectual disability and microcephaly. Clinical Genetics, 2015, 88, e1-4.	2.0	41
144	Parkinson's Disease Genetic Loci in Rapid Eye Movement Sleep Behavior Disorder. Journal of Molecular Neuroscience, 2015, 56, 617-622.	2.3	42

#	Article	IF	CITATIONS
145	Genetic markers of Restless Legs Syndrome in Parkinson disease. Parkinsonism and Related Disorders, 2015, 21, 582-585.	2.2	20
146	The emerging role of SMPD1 mutations in Parkinson's disease: Implications for future studies. Parkinsonism and Related Disorders, 2015, 21, 1294-1295.	2.2	33
147	The Alzheimer disease BIN1 locus as a modifier of GBA-associated Parkinson disease. Journal of Neurology, 2015, 262, 2443-2447.	3.6	17
148	CHRNB3 c57A>G functional promoter change affects Parkinson's disease and smoking. Neurobiology of Aging, 2014, 35, 2179.e1-2179.e6.	3.1	10
149	The p.L302P mutation in the lysosomal enzyme gene <i>SMPD1</i> is a risk factor for Parkinson disease. Neurology, 2013, 80, 1606-1610.	1.1	149
150	Association of Sequence Alterations in the Putative Promoter of <emph type="ital">RAB7L1 With a Reduced Parkinson Disease Risk. Archives of Neurology, 2012, 69, 105.</emph 	4.5	52
151	The Age at Motor Symptoms Onset in LRRK2-Associated Parkinson's Disease is Affected by a Variation in the MAPT Locus: A Possible Interaction. Journal of Molecular Neuroscience, 2012, 46, 541-544.	2.3	25
152	Homozygosity for the MTX1 c.184T>A (p.S63T) alteration modifies the age of onset in GBA-associated Parkinson's disease. Neurogenetics, 2011, 12, 325-332.	1.4	15
153	LRRK2 and GBA mutations differentially affect the initial presentation of Parkinson disease. Neurogenetics, 2010, 11, 121-125.	1.4	69
154	False-positive results using a Gaucher diagnostic kit – RecTL and N370S. Molecular Genetics and Metabolism, 2010, 100, 100-102.	1.1	9
155	Differential phenotype in Parkinson's disease patients with severe versus mild GBA mutations. Brain, 2009, 132, e125-e125.	7.6	46
156	The LRRK2 G2019S mutation as the cause of Parkinson's disease in Ashkenazi Jews. Journal of Neural Transmission, 2009, 116, 1473-1482.	2.8	54
157	Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease. New England Journal of Medicine, 2009, 361, 1651-1661.	27.0	1,747
158	Genotype-phenotype correlations between <i>GBA</i> mutations and Parkinson disease risk and onset. Neurology, 2008, 70, 2277-2283.	1.1	334
159	RABENOSYN separation-of-function mutations uncouple endosomal recycling from lysosomal degradation, causing a distinct Mendelian Disorder. Human Molecular Genetics, 0, , .	2.9	0