Andrea Spanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7339491/publications.pdf Version: 2024-02-01

ANDREA SDANLL

#	Article	IF	CITATIONS
1	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1, .	21.2	172
2	Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors. Scientific Reports, 2018, 8, 8073.	3.3	92
3	A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor. Organic Electronics, 2016, 36, 57-60.	2.6	80
4	An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Scientific Reports, 2015, 5, 8807.	3.3	59
5	Validation of Polymer-Based Screen-Printed Textile Electrodes for Surface EMG Detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1370-1377.	4.9	50
6	Interfacing cells with organic transistors: a review of <i>in vitro</i> and <i>in vivo</i> applications. Lab on A Chip, 2021, 21, 795-820.	6.0	37
7	Charge sensing by organic charge-modulated field effect transistors: application to the detection of bio-related effects. Journal of Materials Chemistry B, 2013, 1, 3811.	5.8	35
8	A reference-less pH sensor based on an organic field effect transistor with tunable sensitivity. Organic Electronics, 2017, 48, 188-193.	2.6	33
9	A three-dimensional micro-electrode array for <i>in-vitro</i> neuronal interfacing. Journal of Neural Engineering, 2020, 17, 036033.	3.5	20
10	Growing Patterned, Cross-linked Nanoscale Polymer Films from Organic and Inorganic Surfaces Using Ring-Opening Metathesis Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 4041-4051.	8.0	15
11	A Periodic Transmission Line Model for Body Channel Communication. IEEE Access, 2020, 8, 160099-160115.	4.2	11
12	Dynamic Surface Electromyography Using Stretchable Screen-Printed Textile Electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1661-1668.	4.9	11
13	Parylene C-Based, Breathable Tattoo Electrodes for High-Quality Bio-Potential Measurements. Frontiers in Bioengineering and Biotechnology, 2022, 10, 820217.	4.1	10
14	An organic neurophysiological tool for neuronal metabolic activity monitoring. APL Bioengineering, 2018, 2, 046105.	6.2	9
15	Three-Dimensional Microelectrodes Array Based on Vertically Stacked Beads For Mapping Neurons' Electrophysiological Activity. , 2019, , .		7
16	Flexible and wearable monitoring systems for biomedical applications in organic flexible electronics: Fundamentals, devices, and applications. , 2021, , 599-625.		5
17	Epidermal Electrodes with Ferrimagnetic/Conductive Properties for Biopotential Recordings. Bioengineering, 2022, 9, 205.	3.5	4
18	Organic Transistor Devices for In Vitro Electrophysiological Applications. Springer Theses, 2016, , .	0.1	3

ANDREA SPANU

0

#	Article	IF	CITATIONS
19	A wearable electronic system for EEG recording. , 2022, , .		3
20	Bioelectrical and metabolic activity recordings by means of organic field effect transistors. , 2015, , .		2
21	In Vitro Multiparametric Cellular Analysis by Micro Organic Charge-modulated Field-effect Transistor Arrays. Journal of Visualized Experiments, 2021, , .	0.3	2
22	Validation of a Novel Tattoo Electrode for ECG Monitoring. , 2021, , .		2
23	Organic FET device as a novel sensor for cell bioelectrical and metabolic activity recordings. , 2013, , .		1
24	Flexible temperature sensors based on charge modulated organic thin film transistors. , 2015, , .		1
25	Stretchable screen-printed PEDOT:PSS electrodes for upper-arm surface electromyography. , 2020, 2020, 4143-4146.		1
26	From MEAs to MOAs: The Next Generation of Bioelectronic Interfaces for Neuronal Cultures. Advances in Neurobiology, 2019, 22, 155-167.	1.8	0
27	Experimental Results. Springer Theses, 2016, , 73-89.	0.1	0

Neuro-electronic devices and nanotools to interact with neuronal networks. , 2020, , .