

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7337150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.	10.3	1,785
2	Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.	31,5	964
3	Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. CheM, 2018, 4, 174-185.	11.7	682
4	Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 2020, 5, 386-397.	39.5	621
5	Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature, 2019, 569, 245-250.	27.8	590
6	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4, 882-890.	39.5	557
7	Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science Advances, 2018, 4, eaau9245.	10.3	521
8	High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano, 2016, 10, 7901-7906.	14.6	500
9	High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81, 826-834.	10.3	443
10	4.0ÂV Aqueous Li-Ion Batteries. Joule, 2017, 1, 122-132.	24.0	441
11	Graphene Hydrogels Deposited in Nickel Foams for Highâ€Rate Electrochemical Capacitors. Advanced Materials, 2012, 24, 4569-4573.	21.0	409
12	Highly Compressible Macroporous Graphene Monoliths via an Improved Hydrothermal Process. Advanced Materials, 2014, 26, 4789-4793.	21.0	354
13	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. Advanced Materials, 2016, 28, 8669-8674.	21.0	349
14	An Inorganicâ€Rich Solid Electrolyte Interphase for Advanced Lithiumâ€Metal Batteries in Carbonate Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 3661-3671.	13.8	317
15	Graphene Materials for Electrochemical Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1244-1253.	4.6	288
16	Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na,) Tj ETQq	000rgBT 16.0gBT	/Overlock 10

17	Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science, 2016, 7, 1874-1881.	7.4	251
18	Highâ€Fluorinated Electrolytes for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1803774.	19.5	227

JI CHEN

#	Article	IF	CITATIONS
19	Solidâ€&tate Electrolyte Design for Lithium Dendrite Suppression. Advanced Materials, 2020, 32, e2002741.	21.0	219
20	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 22194-22201.	13.8	219
21	Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy and Environmental Science, 2018, 11, 1218-1225.	30.8	212
22	A 63 <i>m</i> Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries. ACS Energy Letters, 2020, 5, 968-974.	17.4	197
23	High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Journal of the American Chemical Society, 2020, 142, 2438-2447.	13.7	195
24	Baseâ€Induced Liquid Crystals of Graphene Oxide for Preparing Elastic Graphene Foams with Longâ€Range Ordered Microstructures. Advanced Materials, 2016, 28, 1623-1629.	21.0	193
25	Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials, 2014, 26, 7588-7592.	21.0	182
26	A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 7146-7150.	13.8	177
27	Flexible Aqueous Liâ€lon Battery with High Energy and Power Densities. Advanced Materials, 2017, 29, 1701972.	21.0	175
28	Nanoporous graphene materials. Materials Today, 2014, 17, 77-85.	14.2	170
29	Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2004-2009.	7.1	168
30	A Highly Reversible, Dendriteâ€Free Lithium Metal Anode Enabled by a Lithiumâ€Fluorideâ€Enriched Interphase. Advanced Materials, 2020, 32, e1906427.	21.0	168
31	Self-Templated Formation of P2-type K _{0.6} CoO ₂ Microspheres for High Reversible Potassium-Ion Batteries. Nano Letters, 2018, 18, 1522-1529.	9.1	167
32	Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule, 2019, 3, 2550-2564.	24.0	167
33	Layered P2â€Type K _{0.65} Fe _{0.5} Mn _{0.5} O ₂ Microspheres as Superior Cathode for Highâ€Energy Potassiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1800219.	14.9	157
34	Nitrogen and Sulfur Codoped Graphite Foam as a Self‣upported Metalâ€Free Electrocatalytic Electrode for Water Oxidation. Advanced Energy Materials, 2016, 6, 1501492.	19.5	153
35	Structure and Interface Design Enable Stable Li-Rich Cathode. Journal of the American Chemical Society, 2020, 142, 8918-8927.	13.7	151
36	Size Fractionation of Graphene Oxide Sheets via Filtration through Trackâ€Etched Membranes. Advanced Materials, 2015, 27, 3654-3660.	21.0	149

JI CHEN

#	Article	lF	CITATIONS
37	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	14.6	148
38	Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3ÂV Battery. CheM, 2019, 5, 896-912.	11.7	145
39	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	30.8	142
40	Electrolyte design for Li metal-free Li batteries. Materials Today, 2020, 39, 118-126.	14.2	138
41	Water-Activated VOPO ₄ for Magnesium Ion Batteries. Nano Letters, 2018, 18, 6441-6448.	9.1	127
42	Solidâ€State Electrolyte Anchored with a Carboxylated Azo Compound for Allâ€Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2018, 57, 8567-8571.	13.8	103
43	High-Performance All-Solid-State Na–S Battery Enabled by Casting–Annealing Technology. ACS Nano, 2018, 12, 3360-3368.	14.6	102
44	Tuning Anionic Chemistry To Improve Kinetics of Mg Intercalation. Chemistry of Materials, 2019, 31, 3183-3191.	6.7	91
45	A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. Journal of Materials Chemistry A, 2016, 4, 16213-16218.	10.3	86
46	Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 20741-20747.	8.0	79
47	Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes. Carbon, 2016, 110, 34-40.	10.3	77
48	Enabling safe aqueous lithium ion open batteries by suppressing oxygen reduction reaction. Nature Communications, 2020, 11, 2638.	12.8	71
49	Grapheneâ€Based Organic Electrochemical Capacitors for AC Line Filtering. Advanced Energy Materials, 2017, 7, 1700591.	19.5	64
50	Composite organogels of graphene and activated carbon for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9196.	10.3	60
51	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 22378-22385.	2.0	60
52	Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Advanced Materials Interfaces, 2016, 3, 1600700.	3.7	59
53	High-Energy-Density Rechargeable Mg Battery Enabled by a Displacement Reaction. Nano Letters, 2019, 19, 6665-6672.	9.1	59
54	Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. ACS Energy Letters, 2020, 5, 224-231.	17.4	59

JI CHEN

#	Article	IF	CITATIONS
55	Electrochemical detection of dioxygen and hydrogen peroxide by hemin immobilized on chemically converted graphene. Journal of Electroanalytical Chemistry, 2011, 657, 34-38.	3.8	52
56	A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angewandte Chemie, 2018, 130, 7264-7268.	2.0	51
57	Highly Conductive Stretchable Electrodes Prepared by In Situ Reduction of Wavy Graphene Oxide Films Coated on Elastic Tapes. Advanced Electronic Materials, 2016, 2, 1600022.	5.1	40
58	An ultrasensitive moisture driven actuator based on small flakes of graphene oxide. Sensors and Actuators B: Chemical, 2017, 242, 418-422.	7.8	36
59	High-energy and low-cost membrane-free chlorine flow battery. Nature Communications, 2022, 13, 1281.	12.8	34
60	Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2016, 18, 11104-11110.	2.8	30
61	Solidâ€State Electrolyte Anchored with a Carboxylated Azo Compound for Allâ€Solidâ€State Lithium Batteries. Angewandte Chemie, 2018, 130, 8703-8707.	2.0	29
62	An Inorganicâ€Rich Solid Electrolyte Interphase for Advanced Lithiumâ€Metal Batteries in Carbonate Electrolytes. Angewandte Chemie, 2021, 133, 3705-3715.	2.0	29
63	High-yield production of highly conductive graphene via reversible covalent chemistry. Chemical Communications, 2015, 51, 2806-2809.	4.1	25
64	Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films. ACS Applied Materials & Interfaces, 2018, 10, 5812-5818.	8.0	20
65	"Pottery―of Porous Graphene Materials. Advanced Electronic Materials, 2015, 1, 1500004.	5.1	15
66	Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 36066-36071.	8.0	12
67	Electrochemical Biosensing Based on Graphene Modified Electrodes. Acta Chimica Sinica, 2014, 72, 319.	1.4	10
68	Oriented Graphene Foam with Tunable Wettability by Electrocapillary for Switchable and Ultraâ€Fast Imbibition. Advanced Materials Interfaces, 2016, 3, 1600774.	3.7	6