
Diana Escalante-Alcalde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary Artery Disease Risk-Associated <i>Plpp3</i> Gene and Its Product Lipid Phosphate Phosphatase 3 Regulate Experimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2261-2272.	2.4	26
2	Lipid phosphate phosphatase 3 in vascular pathophysiology. Atherosclerosis, 2018, 271, 156-165.	0.8	25
3	Cardiac-specific inactivation of LPP3 in mice leads to myocardial dysfunction and heart failure. Redox Biology, 2018, 14, 261-271.	9.0	63
4	Lipid phosphate phosphatase 3 regulates adipocyte sphingolipid synthesis, but not developmental adipogenesis or diet-induced obesity in mice. PLoS ONE, 2018, 13, e0198063.	2.5	10
5	Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoEâ~'/â^' mice. Scientific Reports, 2017, 7, 44503.	3.3	37
6	Neural ablation of the PARK10 candidate Plpp3 leads to dopaminergic transmission deficits without neurodegeneration. Scientific Reports, 2016, 6, 24028.	3.3	10
7	A map of the distribution of sphingosine 1-phosphate in the spleen. Nature Immunology, 2015, 16, 1245-1252.	14.5	52
8	Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs Journal of Biological Chemistry, 2014, 289, 33876.	3.4	0
9	Structural Determinants of the Transient Receptor Potential 1 (TRPV1) Channel Activation by Phospholipid Analogs. Journal of Biological Chemistry, 2014, 289, 24079-24090.	3.4	28
10	Mice With Targeted Inactivation of <i>Ppap2b</i> in Endothelial and Hematopoietic Cells Display Enhanced Vascular Inflammation and Permeability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 837-845.	2.4	81
11	Lipid Phosphate Phosphatase 3 Negatively Regulates Smooth Muscle Cell Phenotypic Modulation to Limit Intimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 52-59.	2.4	46
12	Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nature Chemical Biology, 2012, 8, 78-85.	8.0	173
13	Lack of lipid phosphate phosphataseâ€3 in embryonic stem cells compromises neuronal differentiation and neurite outgrowth. Developmental Dynamics, 2012, 241, 953-964.	1.8	13
14	Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle. Cell and Tissue Research, 2011, 345, 137-148.	2.9	65
15	Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosineâ€1â€phosphate metabolism/signaling and development. Clia, 2011, 59, 577-589.	4.9	30
16	Lipid phosphate phosphatase 3 enables efficient thymic egress. Journal of Experimental Medicine, 2011, 208, 1267-1278.	8.5	103
17	Lipid phosphate phosphatase 3 enables efficient thymic egress. Journal of Cell Biology, 2011, 193, i11-i11.	5.2	0
18	Activated Notch1 is a stronger astrocytic stimulus than leukemia inhibitory factor for rat neural stem cells. International Journal of Developmental Biology, 2009, 53, 947-953.	0.6	12

#	Article	IF	CITATIONS
19	Generation of a reporter-null allele of Ppap2b/Lpp3and its expression during embryogenesis. International Journal of Developmental Biology, 2009, 53, 139-147.	0.6	15
20	Generation of a conditional <i>Ppap2b/Lpp3</i> null allele. Genesis, 2007, 45, 465-469.	1.6	21
21	Phenotypic analyses of mouse embryos with ubiquitous expression of Oct4: Effects on mid-hindbrain patterning and gene expression. Developmental Dynamics, 2005, 232, 180-190.	1.8	26
22	The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development (Cambridge), 2003, 130, 4623-4637.	2.5	154
23	Functional Characterization of Transforming Growth Factor Î ² Signaling in Smad2- and Smad3-deficient Fibroblasts. Journal of Biological Chemistry, 2001, 276, 19945-19953.	3.4	367
24	<i>Zac1</i> (<i>Lot1</i>), a Potential Tumor Suppressor Gene, and the Gene for É-Sarcoglycan Are Maternally Imprinted Genes: Identification by a Subtractive Screen of Novel Uniparental Fibroblast Lines. Molecular and Cellular Biology, 2000, 20, 3308-3315.	2.3	179
25	Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12595-12600.	7.1	158
26	Loss of a-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy. Journal of Cell Biology, 1999, 147, 913-920.	5.2	1,097
27	Reactive Oxygen Species Participate in the Control of Mouse Embryonic Cell Death. Experimental Cell Research, 1998, 238, 136-147.	2.6	94
28	Retinoic acid and methylation cis-regulatory elements control the mouse tissue non-specific alkaline phosphatase gene expression. Mechanisms of Development, 1996, 57, 21-32.	1.7	26
29	Somatic and germ cell interactions during histogenetic aggregation of mouse fetal testes. Experimental Cell Research, 1992, 198, 150-158.	2.6	17