Bradley T Estes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7336463/publications.pdf

Version: 2024-02-01

27 4,417 20 27 papers citations h-index g-index

29 29 29 6973
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Functional tissue engineering of articular cartilage for biological joint resurfacing—The 2021 Elizabeth Winston Lanier Kappa Delta Award. Journal of Orthopaedic Research, 2022, 40, 1721-1734.	2.3	2
2	Biological resurfacing in a canine model of hip osteoarthritis. Science Advances, 2021, 7, eabi5918.	10.3	15
3	Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on threeâ€dimensionally woven scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1453-1465.	2.7	21
4	Chondrogenic Differentiation Processes in Human Bone-Marrow Aspirates Seeded in Three-Dimensional-Woven Poly(É>-Caprolactone) Scaffolds Enhanced by Recombinant Adeno-Associated Virus–MediatedSOX9Gene Transfer. Human Gene Therapy, 2018, 29, 1277-1286.	2.7	12
5	Comparison of Fixation Techniques of 3D-Woven Poly(ϵ-Caprolactone) Scaffolds for Cartilage Repair in a Weightbearing Porcine Large Animal Model. Cartilage, 2018, 9, 428-437.	2.7	19
6	Composite Cellularized Structures Created from an Interpenetrating Polymer Network Hydrogel Reinforced by a 3D Woven Scaffold. Macromolecular Bioscience, 2018, 18, e1800140.	4.1	21
7	Functional outcome measures in a surgical model of hip osteoarthritis in dogs. Journal of Experimental Orthopaedics, 2016, 3, 17.	1.8	22
8	Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4513-22.	7.1	94
9	Genipin-Crosslinked Cartilage-Derived Matrix as a Scaffold for Human Adipose-Derived Stem Cell Chondrogenesis. Tissue Engineering - Part A, 2013, 19, 484-496.	3.1	91
10	Composite Threeâ€Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage. Advanced Functional Materials, 2013, 23, 5833-5839.	14.9	218
11	The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds. Biomaterials, 2012, 33, 8967-8974.	11.4	54
12	Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regenerative Medicine, $2011, 6, 81-93$.	1.7	76
13	Three-Dimensional Culture Systems to Induce Chondrogenesis of Adipose-Derived Stem Cells. Methods in Molecular Biology, 2011, 702, 201-217.	0.9	40
14	The effects of BMP6 overexpression on adipose stem cell chondrogenesis: Interactions with dexamethasone and exogenous growth factors. Journal of Biomedical Materials Research - Part A, 2010, 93A, 994-1003.	4.0	45
15	2010 Nicolas Andry Award: Multipotent Adult Stem Cells from Adipose Tissue for Musculoskeletal Tissue Engineering. Clinical Orthopaedics and Related Research, 2010, 468, 2530-2540.	1.5	136
16	Multifunctional Hybrid Threeâ€dimensionally Woven Scaffolds for Cartilage Tissue Engineering. Macromolecular Bioscience, 2010, 10, 1355-1364.	4.1	91
17	Macromol. Biosci. 11/2010. Macromolecular Bioscience, 2010, 10, n/a-n/a.	4.1	0
18	Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 2010, 5, 1294-1311.	12.0	383

BRADLEY T ESTES

#	Article	IF	CITATIONS
19	Chondrogenic Differentiation of Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native Articular Cartilage Extracellular Matrix. Tissue Engineering - Part A, 2009, 15, 231-241.	3.1	259
20	Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell, 2009, 5, 17-26.	11.1	1,669
21	What standards can (and can't) tell us about a spinal device. SAS Journal, 2009, 3, 178-183.	1.3	14
22	Monolayer cell expansion conditions affect the chondrogenic potential of adiposeâ€derived stem cells. Biotechnology and Bioengineering, 2008, 99, 986-995.	3.3	70
23	Differentiation of Adipose Stem Cells. Methods in Molecular Biology, 2008, 456, 155-171.	0.9	94
24	Polyetheretherketone as a biomaterial for spinal applications. Biomaterials, 2006, 27, 324-334.	11.4	468
25	Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis and Rheumatism, 2006, 54, 1222-1232.	6.7	279
26	Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. Journal of Cellular Physiology, 2006, 209, 987-995.	4.1	107
27	Mechanical Signals as Regulators of Stem Cell Fate. Current Topics in Developmental Biology, 2004, 60, 91-126.	2.2	111