Alex McDougall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-content analysis of larval phenotypes for the screening of xenobiotic toxicity using Phallusia mammillata embryos. Aquatic Toxicology, 2021, 232, 105768.	4.0	2
2	Gene Editing in the Ascidian Phallusia mammillata and Tail Nerve Cord Formation. Methods in Molecular Biology, 2021, 2219, 217-230.	0.9	1
3	Combined effect of cell geometry and polarity domains determines the orientation of unequal division. ELife, 2021, 10, .	6.0	8
4	Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division. Developmental Cell, 2020, 55, 695-706.e4.	7.0	20
5	Role of PB1 Midbody Remnant Creating Tethered Polar Bodies during Meiosis II. Genes, 2020, 11, 1394.	2.4	2
6	The Spindle Assembly Checkpoint Functions during Early Development in Non-Chordate Embryos. Cells, 2020, 9, 1087.	4.1	11
7	Potential roles of nuclear receptors in mediating neurodevelopmental toxicity of known endocrineâ€disrupting chemicals in ascidian embryos. Molecular Reproduction and Development, 2019, 86, 1333-1347.	2.0	8
8	Bisphenols disrupt differentiation of the pigmented cells during larval brain formation in the ascidian. Aquatic Toxicology, 2019, 216, 105314.	4.0	13
9	Emergence of Embryo Shape During Cleavage Divisions. Results and Problems in Cell Differentiation, 2019, 68, 127-154.	0.7	9
10	Practical Guide for Ascidian Microinjection: Phallusia mammillata. Advances in Experimental Medicine and Biology, 2018, 1029, 15-24.	1.6	15
11	Kif2 localizes to a subdomain of cortical endoplasmic reticulum that drives asymmetric spindle position. Nature Communications, 2017, 8, 917.	12.8	18
12	Ascidians: An Emerging Marine Model for Drug Discovery and Screening. Current Topics in Medicinal Chemistry, 2017, 17, 2056-2066.	2.1	17
13	The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions. ELife, 2017, 6, .	6.0	29
14	Influence of cell polarity on early development of the sea urchin embryo. Developmental Dynamics, 2015, 244, 1469-1484.	1.8	17
15	Centrosomes and spindles in ascidian embryos and eggs. Methods in Cell Biology, 2015, 129, 317-339.	1.1	19
16	Microinjection and 4D Fluorescence Imaging in the Eggs and Embryos of the Ascidian Phallusia mammillata. Methods in Molecular Biology, 2014, 1128, 175-185.	0.9	19
17	Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochemical and Biophysical Research Communications, 2014, 450, 1175-1181.	2.1	33
18	Beta-catenin patterns the cell cycle during maternal-to-zygotic transition in urochordate embryos. Developmental Biology, 2013, 384, 331-342.	2.0	37

ALEX MCDOUGALL

#	Article	IF	CITATIONS
19	The PP2A Inhibitor I2PP2A Is Essential for Sister Chromatid Segregation in Oocyte Meiosis II. Current Biology, 2013, 23, 485-490.	3.9	69
20	Practical tips for imaging ascidian embryos. Development Growth and Differentiation, 2013, 55, 446-453.	1.5	5
21	Release from meiotic arrest in ascidian eggs requires the activity of two phosphatases but not CaMKII. Development (Cambridge), 2013, 140, 4583-4593.	2.5	16
22	Release from meiotic arrest in ascidian eggs requires the activity of two phosphatases but not CaMKII. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0
23	Cell-Cycle Control in Oocytes and During Early Embryonic Cleavage Cycles in Ascidians. International Review of Cell and Molecular Biology, 2012, 297, 235-264.	3.2	13
24	Urochordate Ascidians Possess a Single Isoform of Aurora Kinase That Localizes to the Midbody via TPX2 in Eggs and Cleavage Stage Embryos. PLoS ONE, 2012, 7, e45431.	2.5	9
25	Cell Cycle in Ascidian Eggs and Embryos. Results and Problems in Cell Differentiation, 2011, 53, 153-169.	0.7	6
26	Mos limits the number of meiotic divisions in urochordate eggs. Development (Cambridge), 2011, 138, 885-895.	2.5	27
27	Embryological Methods in Ascidians: The Villefranche-sur-Mer Protocols. Methods in Molecular Biology, 2011, 770, 365-400.	0.9	55
28	Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development (Cambridge), 2010, 137, 2011-2021.	2.5	50
29	A novel mechanism controls the Ca2+ oscillations triggered by activation of ascidian eggs and has an absolute requirement for Cdk1 activity. Journal of Cell Science, 2007, 120, 1763-1771.	2.0	16
30	ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development (Cambridge), 2007, 134, 1203-1219.	2.5	70
31	Signals and calcium waves at fertilization. Seminars in Cell and Developmental Biology, 2006, 17, 223-225.	5.0	6
32	RNA interference in meiosis I human oocytes: towards an understanding of human aneuploidy. Molecular Human Reproduction, 2005, 11, 397-404.	2.8	21
33	Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction, 2005, 130, 829-843.	2.6	97
34	Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. Journal of Cell Biology, 2005, 171, 47-59.	5.2	44
35	Restaging the Spindle Assembly Checkpoint in Female Mammalian Meiosis I. Cell Cycle, 2005, 4, 650-653.	2.6	24
36	Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse ocytes. Genes and Development, 2005, 19, 202-207.	5.9	189

ALEX MCDOUGALL

#	Article	IF	CITATIONS
37	Fertilisation calcium signals in the ascidian egg. Biology of the Cell, 2004, 96, 29-36.	2.0	22
38	Ca2+-promoted cyclin B1 degradation in mouse oocytes requires the establishment of a metaphase arrest. Developmental Biology, 2004, 269, 206-219.	2.0	60
39	Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nature Cell Biology, 2003, 5, 1023-1025.	10.3	189
40	Exploring the mechanism of action of the sperm-triggered calcium-wave pacemaker in ascidian zygotes. Journal of Cell Science, 2003, 116, 4997-5004.	2.0	25
41	IP3 Responsiveness Is Regulated in a Meiotic Cell Cycle Dependent Manner: Implications for Fertilization Induced Calcium Signalling. Cell Cycle, 2003, 2, 609-612.	2.6	8
42	Inositol 1,4,5-trisphosphate (IP3) responsiveness is regulated in a meiotic cell cycle dependent manner: implications for fertilization induced calcium signaling. Cell Cycle, 2003, 2, 610-3.	2.6	3
43	Ca2+ Oscillations Promote APC/C-Dependent Cyclin B1 Degradation during Metaphase Arrest and Completion of Meiosis in Fertilizing Mouse Eggs. Current Biology, 2002, 12, 746-750.	3.9	133
44	Simultaneous Measurement of Intracellular Nitric Oxide and Free Calcium Levels in Chordate Eggs Demonstrates That Nitric Oxide Has No Role at Fertilization. Developmental Biology, 2001, 234, 216-230.	2.0	45
45	Sperm-triggered Calcium Oscillations at Fertilization. , 2001, , 36-46.		1
46	Ca2+ oscillations and the cell cycle at fertilisation of mammalian and ascidian eggs. Biology of the Cell, 2000, 92, 187-196.	2.0	45
47	The initiation and propagation of the fertilization wave in sea urchin eggs. Biology of the Cell, 2000, 92, 205-214.	2.0	44
48	Calcium waves and oscillations in eggs. Biophysical Chemistry, 1998, 72, 131-140.	2.8	41
49	Function and characteristics of repetitive calcium waves associated with meiosis. Current Biology, 1995, 5, 318-328.	3.9	103
50	Different calcium-dependent pathways control fertilisation-triggered glycoside release and the cortical contraction in ascidian eggs. Zygote, 1995, 3, 251-258.	1.1	28
51	Calcium signalling at fertilization. Journal of the Marine Biological Association of the United Kingdom, 1994, 74, 3-16.	0.8	16
52	Cytoplasmic domains in eggs. Trends in Cell Biology, 1994, 4, 166-172.	7.9	33
53	Thimerosal reveals calcium-induced calcium release in unfertilised sea urchin eggs. Zygote, 1993, 1, 35-42.	1.1	43
54	Sperm-induced currents at fertilization in sea urchin eggs injected with EGTA and neomycin. Developmental Biology, 1992, 151, 552-563.	2.0	32