List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upstream open reading frames mediate autophagy-related protein translation. Autophagy, 2023, 19, 457-473.	9.1	3
2	Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy, 2023, 19, 54-74.	9.1	44
3	Ion Channels and Transporters in Autophagy. Autophagy, 2022, 18, 4-23.	9.1	17
4	The cGAS-STING pathway connects mitochondrial damage to inflammation in burn-induced acute lung injury in rat. Burns, 2022, 48, 168-175.	1.9	13
5	Signaling pathways and defense mechanisms of ferroptosis. FEBS Journal, 2022, 289, 7038-7050.	4.7	177
6	STING1 in sepsis: Mechanisms, functions, and implications. Chinese Journal of Traumatology - English Edition, 2022, 25, 1-10.	1.4	13
7	The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Therapy, 2022, 29, 875-878.	4.6	69
8	Trypsin-Mediated Sensitization to Ferroptosis Increases the Severity of Pancreatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 483-500.	4.5	32
9	Heterodimeric RGD-NGR PET Tracer for the Early Detection of Pancreatic Cancer. Molecular Imaging and Biology, 2022, 24, 580-589.	2.6	8
10	The mechanism of HMGB1 secretion and release. Experimental and Molecular Medicine, 2022, 54, 91-102.	7.7	225
11	Cyclophosphamide-induced GPX4 degradation triggers parthanatos by activating AIFM1. Biochemical and Biophysical Research Communications, 2022, 606, 68-74.	2.1	14
12	DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy, 2022, 18, 2036-2049.	9.1	51
13	Targeting HSP90 sensitizes pancreas carcinoma to PD-1 blockade. Oncolmmunology, 2022, 11, 2068488.	4.6	6
14	HSP90 as an emerging barrier to immune checkpoint blockade therapy. Oncoscience, 2022, 9, 20-22.	2.2	2
15	The V-ATPases in cancer and cell death. Cancer Gene Therapy, 2022, 29, 1529-1541.	4.6	26
16	Induction of autophagy-dependent ferroptosis to eliminate drug-tolerant human retinoblastoma cells. Cell Death and Disease, 2022, 13, .	6.3	29
17	Regulation and function of autophagy in pancreatic cancer. Autophagy, 2021, 17, 3275-3296.	9.1	89
18	Ferroptosis: machinery and regulation. Autophagy, 2021, 17, 2054-2081.	9.1	765

#	Article	IF	CITATIONS
19	Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 2021, 17, 948-960.	9.1	228
20	Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Therapy, 2021, 28, 55-63.	4.6	134
21	CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut, 2021, 70, 890-899.	12.1	59
22	ESCRT-III-mediated membrane repair in cell death and tumor resistance. Cancer Gene Therapy, 2021, 28, 1-4.	4.6	60
23	Ferroptosis: molecular mechanisms and health implications. Cell Research, 2021, 31, 107-125.	12.0	1,406
24	Monitoring autophagy-dependent ferroptosis. Methods in Cell Biology, 2021, 165, 163-176.	1.1	10
25	CDK1/2/5 blockade: killing two birds with one stone. Oncolmmunology, 2021, 10, 1875612.	4.6	1
26	Broadening horizons: the role of ferroptosis in cancer. Nature Reviews Clinical Oncology, 2021, 18, 280-296.	27.6	1,216
27	Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy, 2021, 17, 3361-3374.	9.1	116
28	Characteristics and Biomarkers of Ferroptosis. Frontiers in Cell and Developmental Biology, 2021, 9, 637162.	3.7	199
29	PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Reports, 2021, 34, 108767.	6.4	112
30	Mitophagy in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 616079.	2.8	10
31	Metabolic checkpoint of ferroptosis resistance. Molecular and Cellular Oncology, 2021, 8, 1901558.	0.7	6
32	Ferroptosis by Lipid Peroxidation: The Tip of the Iceberg?. Frontiers in Cell and Developmental Biology, 2021, 9, 646890.	3.7	19
33	Inflammasome-Dependent Coagulation Activation in Sepsis. Frontiers in Immunology, 2021, 12, 641750.	4.8	38
34	Pharmacological Modulation of BET Family in Sepsis. Frontiers in Pharmacology, 2021, 12, 642294.	3.5	6
35	Lipid Metabolism in Ferroptosis. Advanced Biology, 2021, 5, e2100396.	2.5	65
36	Ferroptosis in infection, inflammation, and immunity. Journal of Experimental Medicine, 2021, 218, .	8.5	298

#	Article	IF	CITATIONS
37	The HMGB1-AGER-STING1 pathway mediates the sterile inflammatory response to alkaliptosis. Biochemical and Biophysical Research Communications, 2021, 560, 165-171.	2.1	12
38	Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends in Immunology, 2021, 42, 508-522.	6.8	51
39	STING1 Promotes Ferroptosis Through MFN1/2-Dependent Mitochondrial Fusion. Frontiers in Cell and Developmental Biology, 2021, 9, 698679.	3.7	54
40	MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chemical Biology, 2021, 28, 765-775.e5.	5.2	98
41	The STING1 network regulates autophagy and cell death. Signal Transduction and Targeted Therapy, 2021, 6, 208.	17.1	105
42	Targeting NF-κB–dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochemical and Biophysical Research Communications, 2021, 562, 55-61.	2.1	15
43	Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Communications, 2021, 41, 642-660.	9.2	29
44	Cell death in pancreatic cancer: from pathogenesis to therapy. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 804-823.	17.8	156
45	SMG9 drives ferroptosis by directly inhibiting GPX4 degradation. Biochemical and Biophysical Research Communications, 2021, 567, 92-98.	2.1	24
46	Organelle-specific regulation of ferroptosis. Cell Death and Differentiation, 2021, 28, 2843-2856.	11.2	138
47	PPARG-mediated ferroptosis in dendritic cells limits antitumor immunity. Biochemical and Biophysical Research Communications, 2021, 576, 33-39.	2.1	43
48	Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends in Cancer, 2021, 7, 891-901.	7.4	78
49	The dark side of ferroptosis in pancreatic cancer. Oncolmmunology, 2021, 10, 1868691.	4.6	26
50	Pirin is a nuclear redox-sensitive modulator of autophagy-dependent ferroptosis. Biochemical and Biophysical Research Communications, 2021, 536, 100-106.	2.1	34
51	Cellular degradation systems in ferroptosis. Cell Death and Differentiation, 2021, 28, 1135-1148.	11.2	283
52	NUPR1 is a critical repressor of ferroptosis. Nature Communications, 2021, 12, 647.	12.8	126
53	The BET family in immunity and disease. Signal Transduction and Targeted Therapy, 2021, 6, 23.	17.1	135
54	Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Molecular Cancer, 2021, 20, 128.	19.2	41

#	Article	IF	CITATIONS
55	Itaconic acid induces ferroptosis by activating ferritinophagy. Biochemical and Biophysical Research Communications, 2021, 583, 56-62.	2.1	12
56	The Versatile Gasdermin Family: Their Function and Roles in Diseases. Frontiers in Immunology, 2021, 12, 751533.	4.8	70
57	The Art of War: Ferroptosis and Pancreatic Cancer. Frontiers in Pharmacology, 2021, 12, 773909.	3.5	12
58	Ferroptosis is a type of autophagy-dependent cell death. Seminars in Cancer Biology, 2020, 66, 89-100.	9.6	552
59	Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Therapy, 2020, 27, 267-269.	4.6	46
60	Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16, 2069-2083.	9.1	319
61	ESCRT-III–dependent membrane repair blocks ferroptosis. Biochemical and Biophysical Research Communications, 2020, 522, 415-421.	2.1	143
62	NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochemical and Biophysical Research Communications, 2020, 531, 581-587.	2.1	86
63	Extracellular SQSTM1 mediates bacterial septic death in mice through insulin receptor signalling. Nature Microbiology, 2020, 5, 1576-1587.	13.3	45
64	Oxidative Damage and Antioxidant Defense in Ferroptosis. Frontiers in Cell and Developmental Biology, 2020, 8, 586578.	3.7	265
65	Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochemical and Biophysical Research Communications, 2020, 533, 1464-1469.	2.1	59
66	Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 2020, 8, 590226.	3.7	408
67	Mitophagy Receptors in Tumor Biology. Frontiers in Cell and Developmental Biology, 2020, 8, 594203.	3.7	40
68	Chloroquine in fighting COVID-19: good, bad, or both?. Autophagy, 2020, 16, 2273-2275.	9.1	15
69	Damage-Associated Molecular Patterns and the Systemic Immune Consequences of Severe Thermal Injury. Journal of Immunology, 2020, 205, 1189-1197.	0.8	31
70	HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon, 2020, 6, e05672.	3.2	118
71	Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nature Communications, 2020, 11, 6339.	12.8	201
72	Interplay Between Lipid Metabolism and Autophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 431.	3.7	115

#	Article	IF	CITATIONS
73	Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cell Chemical Biology, 2020, 27, 420-435.	5.2	399
74	Transcription factors in ferroptotic cell death. Cancer Gene Therapy, 2020, 27, 645-656.	4.6	141
75	TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host and Microbe, 2020, 27, 556-570.e6.	11.0	119
76	ACOD1 in immunometabolism and disease. Cellular and Molecular Immunology, 2020, 17, 822-833.	10.5	88
77	The Multifaceted Effects of Autophagy on the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 99-114.	1.6	18
78	The circadian clock protects against ferroptosis-induced sterile inflammation. Biochemical and Biophysical Research Communications, 2020, 525, 620-625.	2.1	44
79	AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochemical and Biophysical Research Communications, 2020, 523, 966-971.	2.1	138
80	The hallmarks of COVID-19 disease. PLoS Pathogens, 2020, 16, e1008536.	4.7	342
81	The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology and Medicine, 2019, 133, 162-168.	2.9	384
82	AGER-Mediated Lipid Peroxidation Drives Caspase-11 Inflammasome Activation in Sepsis. Frontiers in Immunology, 2019, 10, 1904.	4.8	26
83	Clockophagy is a novel selective autophagy process favoring ferroptosis. Science Advances, 2019, 5, eaaw2238.	10.3	286
84	The release and activity of HMGB1 in ferroptosis. Biochemical and Biophysical Research Communications, 2019, 510, 278-283.	2.1	350
85	cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Science Advances, 2019, 5, eaav5562.	10.3	89
86	The molecular machinery of regulated cell death. Cell Research, 2019, 29, 347-364.	12.0	1,373
87	Lipid storage and lipophagy regulates ferroptosis. Biochemical and Biophysical Research Communications, 2019, 508, 997-1003.	2.1	281
88	JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice. Gastroenterology, 2018, 154, 1480-1493.	1.3	105
89	Crosstalk between hepatitis B virus X and highâ€mobility group box 1 facilitates autophagy in hepatocytes. Molecular Oncology, 2018, 12, 322-338.	4.6	31
90	AMPK regulates immunometabolism in sepsis. Brain, Behavior, and Immunity, 2018, 72, 89-100.	4.1	33

#	Article	IF	CITATIONS
91	High mobility group protein B1 controls liver cancer initiation through yesâ€associated protein â€dependent aerobic glycolysis. Hepatology, 2018, 67, 1823-1841.	7.3	88
92	Response to comment on "ALK is a therapeutic target for lethal sepsis― Science Translational Medicine, 2018, 10, .	12.4	0
93	A novel lncRNA, TCONS_00006195, represses hepatocellular carcinoma progression by inhibiting enzymatic activity of ENO1. Cell Death and Disease, 2018, 9, 1184.	6.3	43
94	The STINC-STAT6 pathway drives Cas9-induced host response in human monocytes. Biochemical and Biophysical Research Communications, 2018, 506, 278-283.	2.1	6
95	Ferroptosis is a lysosomal cell death process. Biochemical and Biophysical Research Communications, 2018, 503, 1550-1556.	2.1	172
96	The ferroptosis inducer erastin promotes proliferation and differentiation in human peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 2018, 503, 1689-1695.	2.1	40
97	AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc– Activity. Current Biology, 2018, 28, 2388-2399.e5.	3.9	471
98	The Circadian Clock Controls Immune Checkpoint Pathway in Sepsis. Cell Reports, 2018, 24, 366-378.	6.4	120
99	PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism. Developmental Cell, 2018, 46, 441-455.e8.	7.0	176
100	Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis. Cell Host and Microbe, 2018, 24, 97-108.e4.	11.0	390
101	The Dual Role of HMGB1 in Pancreatic Cancer. Journal of Pancreatology, 2018, 1, 19-24.	0.9	3
102	HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells. Cancer Research, 2017, 77, 2064-2077.	0.9	353
103	The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation. Journal of Experimental and Clinical Cancer Research, 2017, 36, 51.	8.6	122
104	Autophagy and Ferroptosis—What Is the Connection?. Current Pathobiology Reports, 2017, 5, 153-159.	3.4	133
105	ALK is a therapeutic target for lethal sepsis. Science Translational Medicine, 2017, 9, .	12.4	90
106	Inhibition of Aurora Kinase A Induces Necroptosis inÂPancreaticÂCarcinoma. Gastroenterology, 2017, 153, 1429-1443.e5.	1.3	137
107	The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 2017, 20, 1692-1704.	6.4	608
108	Plumbagin Protects Mice from Lethal Sepsis by Modulating Immunometabolism Upstream of PKM2. Molecular Medicine, 2016, 22, 162-172.	4.4	34

#	Article	IF	CITATIONS
109	Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochemical and Biophysical Research Communications, 2016, 473, 775-780.	2.1	174
110	The Receptor for Advanced Glycation End Products Activates the AIM2 Inflammasome in Acute Pancreatitis. Journal of Immunology, 2016, 196, 4331-4337.	0.8	50
111	Activation of the p62â€Keap1â€NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63, 173-184.	7.3	1,263
112	Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemical and Biophysical Research Communications, 2016, 478, 1338-1343.	2.1	650
113	CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochemical and Biophysical Research Communications, 2016, 478, 838-844.	2.1	341
114	FANCD2 protects against bone marrow injury from ferroptosis. Biochemical and Biophysical Research Communications, 2016, 480, 443-449.	2.1	136
115	PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nature Communications, 2016, 7, 13280.	12.8	356
116	A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy, 2016, 12, 2374-2385.	9.1	78
117	Antiferroptotic activity of non-oxidative dopamine. Biochemical and Biophysical Research Communications, 2016, 480, 602-607.	2.1	59
118	Metallothioneinâ€1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64, 488-500.	7.3	462
119	Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12, 1425-1428.	9.1	1,318
120	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
121	Novel chemokine-like activities of histones in tumor metastasis. Oncotarget, 2016, 7, 61728-61740.	1.8	13
122	The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Molecular and Cellular Oncology, 2015, 2, e1054549.	0.7	301
123	Nuclear DAMP complex-mediated RAGE-dependent macrophage cellÂdeath. Biochemical and Biophysical Research Communications, 2015, 458, 650-655.	2.1	24
124	Oxidative stress-mediated HMGB1 biology. Frontiers in Physiology, 2015, 6, 93.	2.8	210
125	DAMPs, ageing, and cancer: The †DAMP Hypothesis'. Ageing Research Reviews, 2015, 24, 3-16.	10.9	117
126	Reactive oxygen species regulate the differentiation of acute promyelocytic leukemia cells through HMGB1-mediated autophagy. American Journal of Cancer Research, 2015, 5, 714-25.	1.4	17

#	ARTICLE	IF	CITATIONS
127	High Mobility Group Box 1 (HMGB1) Phenotypic Role Revealed with Stress. Molecular Medicine, 2014, 20, 359-362.	4.4	37
128	Cell Death and DAMPs in Acute Pancreatitis. Molecular Medicine, 2014, 20, 466-477.	4.4	119
129	Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice. Gastroenterology, 2014, 146, 1097-1107.e8.	1.3	200
130	PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nature Communications, 2014, 5, 4436.	12.8	346
131	HMCB1 in health and disease. Molecular Aspects of Medicine, 2014, 40, 1-116.	6.4	763
132	Autophagy is required for IL-2-mediated fibroblast growth. Experimental Cell Research, 2013, 319, 556-565.	2.6	34
133	HMGB1 in Cancer: Good, Bad, or Both?. Clinical Cancer Research, 2013, 19, 4046-4057.	7.0	399
134	Emerging Role of High-Mobility Group Box 1 (HMGB1) in Liver Diseases. Molecular Medicine, 2013, 19, 357-366.	4.4	98
135	PKR-Dependent Inflammatory Signals. Science Signaling, 2012, 5, pe47.	3.6	86
136	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
137	ACER/RACE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy, 2012, 8, 989-991.	9.1	82
138	RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy, 2011, 7, 442-444.	9.1	71
139	HMCB1 as an autophagy sensor in oxidative stress. Autophagy, 2011, 7, 904-906.	9.1	79
140	Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy, 2011, 7, 1256-1258.	9.1	102
141	HMGB1: A novel Beclin 1-binding protein active in autophagy. Autophagy, 2010, 6, 1209-1211.	9.1	183