Paul D Prenzler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335756/publications.pdf

Version: 2024-02-01

108 papers 8,730 citations

45 h-index 92 g-index

113 all docs

 $\begin{array}{c} 113 \\ \text{docs citations} \end{array}$

113 times ranked

9847 citing authors

#	Article	IF	CITATIONS
1	Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 1999, 66, 401-436.	8.2	982
2	Methods for testing antioxidant activity. Analyst, The, 2002, 127, 183-198.	3 . 5	891
3	Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 2001, 73, 73-84.	8.2	868
4	Olive oil volatile compounds, flavour development and quality: A critical review. Food Chemistry, 2007, 100, 273-286.	8.2	539
5	Bioactivity and Analysis of Biophenols Recovered from Olive Mill Waste. Journal of Agricultural and Food Chemistry, 2005, 53, 823-837.	5.2	400
6	Sample preparation in the determination of phenolic compounds in fruits. Analyst, The, 2000, 125, 989-1009.	3 . 5	259
7	Analytical chemistry of freshwater humic substances. Analytica Chimica Acta, 2004, 527, 105-124.	5.4	240
8	Biotransformations of phenolic compounds in Olea europaea L Scientia Horticulturae, 2002, 92, 147-176.	3.6	207
9	Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chemistry, 2017, 230, 195-207.	8.2	171
10	Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Analytica Chimica Acta, 2007, 603, 176-189.	5.4	164
11	Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food and Chemical Toxicology, 2007, 45, 1238-1248.	3.6	162
12	Recent and potential developments in the analysis of urine: A review. Analytica Chimica Acta, 2011, 684, 17-29.	5.4	156
13	Investigation of Australian Olive Mill Waste for Recovery of Biophenols. Journal of Agricultural and Food Chemistry, 2005, 53, 9911-9920.	5.2	138
14	Ascorbic Acid: A Review of its Chemistry and Reactivity in Relation to a Wine Environment. Critical Reviews in Food Science and Nutrition, 2011, 51, 479-498.	10.3	138
15	Endogenous biophenol, fatty acid and volatile profiles of selected oils. Food Chemistry, 2007, 100, 1544-1551.	8.2	124
16	Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L Natural Product Reports, 2008, 25, 1167.	10.3	121
17	NMR Study of the reactions of the cis-diamminediaquaplatinum(II) cation with glutathione and amino acids containing a thiol group. Inorganic Chemistry, 1989, 28, 2030-2037.	4.0	119
18	Changes in Volatile and Phenolic Compounds with Malaxation Time and Temperature during Virgin Olive Oil Production. Journal of Agricultural and Food Chemistry, 2006, 54, 7641-7651.	5.2	112

#	Article	IF	Citations
19	Identification of Phenolic Compounds in Tissues of the Novel Olive Cultivar Hardy's Mammoth. Journal of Agricultural and Food Chemistry, 2002, 50, 6716-6724.	5.2	105
20	Quantitative Changes in Phenolic Content during Physiological Development of the Olive (Olea) Tj ETQq0 0 0 rg	gBT/Qverlo	ock 10 Tf 50 7
21	LC-MS Investigation of Oxidation Products of Phenolic Antioxidants. Journal of Agricultural and Food Chemistry, 2004, 52, 962-971.	5.2	94
22	Liquid chromatography with electrospray ionisation mass spectrometric detection of phenolic compounds from Olea europaea. Journal of Chromatography A, 1999, 855, 529-537.	3.7	85
23	Discrimination of Olive Oils and Fruits into Cultivars and Maturity Stages Based on Phenolic and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2005, 53, 8054-8062.	5.2	76
24	Antioxidant Action of Glutathione and the Ascorbic Acid/Glutathione Pair in a Model White Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 3940-3949.	5.2	76
25	Gas Chromatographyâ€Combustionâ€Isotope Ratio Mass Spectrometry for Traceability and Authenticity in Foods and Beverages. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 814-837.	11.7	76
26	Liquid Chromatographyâ^'Mass Spectrometry (LC-MS) Investigation of the Thiobarbituric Acid Reactive Substances (TBARS) Reaction. Journal of Agricultural and Food Chemistry, 2002, 50, 1720-1724.	5.2	68
27	Ascorbic Acid-Induced Browning of (+)-Catechin In a Model Wine System. Journal of Agricultural and Food Chemistry, 2001, 49, 934-939.	5.2	66
28	A cross-cultural study of wine consumers with respect to health benefits of wine. Food Quality and Preference, 2013, 28, 531-538.	4.6	64
29	Varietal and processing effects on the volatile profile of Australian olive oils. Food Chemistry, 2004, 84, 341-349.	8.2	63
30	The significance of low impact odorants in global odour perception. Trends in Food Science and Technology, 2008, 19, 383-389.	15.1	62
31	Impact of the condition of storage of tartaric acid solutions on the production and stability of glyoxylic acid. Food Chemistry, 2007, 102, 905-916.	8.2	58
32	A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chemistry, 2017, 214, 147-155.	8.2	56
33	Defining the Ascorbic Acid Crossover from Anti-Oxidant to Pro-Oxidant in A Model Wine Matrix Containing (+)-Catechin. Journal of Agricultural and Food Chemistry, 2003, 51, 4126-4132.	5.2	55
34	A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC–MS – Application on Semillon wines. Analytica Chimica Acta, 2010, 660, 149-157.	5.4	55
35	Coupled Electron- and Proton-Transfer Processes in the Reduction of \hat{l} ±-[P2W18O62]6-and \hat{l} ±-[H2W12O40]6-As Revealed by Simulation of Cyclic Voltammograms. Analytical Chemistry, 1999, 71, 3650-3656.	6.5	53
36	Novel Secoiridoids with Antioxidant Activity from Australian Olive Mill Waste. Journal of Agricultural and Food Chemistry, 2007, 55, 2848-2853.	5.2	53

#	Article	IF	Citations
37	Potent antioxidant biophenols from olive mill waste. Food Chemistry, 2008, 111, 171-178.	8.2	53
38	High-field NMR spectroelectrochemistry of spinning solutions: simultaneous in situ detection of electrogenerated species in a standard probe under potentiostatic control. Electrochemistry Communications, 2000, 2, 516-521.	4.7	52
39	Pharmacology of Olive Biophenols. Advances in Molecular Toxicology, 2012, , 195-242.	0.4	51
40	Applications of mass spectrometry to plant phenols. TrAC - Trends in Analytical Chemistry, 1999, 18, 362-372.	11.4	50
41	The Role of Copper(II) in the Bridging Reactions of (+)-Catechin by Glyoxylic Acid in a Model White Wine. Journal of Agricultural and Food Chemistry, 2003, 51, 6204-6210.	5.2	50
42	Chemistry and Bioactivity of Olive Biophenols in Some Antioxidant and Antiproliferative in Vitro Bioassays. Chemical Research in Toxicology, 2009, 22, 227-234.	3.3	50
43	DNA targeted platinum complexes: synthesis, cytotoxicity and DNA interactions of cis-dichloroplatinum(II) complexes tethered to phenazine-1-carboxamides. Journal of Inorganic Biochemistry, 2000, 81, 111-117.	3.5	49
44	Factors influencing the production and stability of xanthylium cation pigments in a model white wine system. Australian Journal of Grape and Wine Research, 2006, 12, 57-68.	2.1	48
45	Effect of Processing Conditions, Prestorage Treatment, and Storage Conditions on the Phenol Content and Antioxidant Activity of Olive Mill Waste. Journal of Agricultural and Food Chemistry, 2008, 56, 3925-3932.	5.2	47
46	Copigmentation and anti-copigmentation in grape extracts studied by spectrophotometry and post-column-reaction HPLC. Food Chemistry, 2012, 132, 2194-2201.	8.2	45
47	Discrimination of Storage Conditions and Freshness in Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2006, 54, 7144-7151.	5.2	44
48	Impact of Cultivar, Harvesting Time, and Seasonal Variation on the Content of Biophenols in Olive Mill Waste. Journal of Agricultural and Food Chemistry, 2008, 56, 8851-8858.	5.2	43
49	Reaction of the cis-diamminediaquaplatinum(II) cation with N-acetylglycine. Inorganic Chemistry, 1989, 28, 815-819.	4.0	42
50	Should Red Wine Be Considered a Functional Food?. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 530-551.	11.7	41
51	Canola (Brassica napus) oil from Australian cultivars shows promising levels of tocopherols and carotenoids, along with good oxidative stability. Journal of Food Composition and Analysis, 2015, 42, 179-186.	3.9	41
52	Reactions of the cis-diamminediaquaplatinum(II) cation with glycinamide, N-glycylglycine, and N-(N-glycylglycyl)glycine. Crystal structure of a complex with two diammineplatinum(II) cations bound to glycylglycinate. Inorganic Chemistry, 1990, 29, 3562-3569.	4.0	40
53	Development of a headspace solid phase microextraction-gas chromatography method for monitoring volatile compounds in extended time–course experiments of olive oil. Analytica Chimica Acta, 2006, 556, 407-414.	5.4	40
54	Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure. Lipids in Health and Disease, 2016, 15, 86.	3.0	38

#	Article	IF	CITATIONS
55	Recovery of phenolic compounds from Olea europaea. Analytica Chimica Acta, 2001, 445, 67-77.	5.4	36
56	Effect of Added Caffeic Acid and Tyrosol on the Fatty Acid and Volatile Profiles of Camellia Oil following Heating. Journal of Agricultural and Food Chemistry, 2006, 54, 9551-9558.	5.2	36
57	Changes in Virgin Olive Oil Quality during Low-Temperature Fruit Storage. Journal of Agricultural and Food Chemistry, 2008, 56, 2415-2422.	5.2	36
58	Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. Chemosphere, 2022, 291, 132981.	8.2	35
59	Oxidation of caffeic acid in a wine-like medium: Production of dihydroxybenzaldehyde and its subsequent reactions with (+)-catechin. Food Chemistry, 2007, 105, 968-975.	8.2	34
60	The Influence of Stereochemistry of Antioxidants and Flavanols on Oxidation Processes in a Model Wine System: Ascorbic Acid, Erythorbic Acid, (+)-Catechin and (â^')-Epicatechin. Journal of Agricultural and Food Chemistry, 2010, 58, 1004-1011.	5.2	32
61	Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities targeting Alzheimer's disease treatment. Journal of Functional Foods, 2017, 33, 345-362.	3.4	32
62	Examination of the sulfur dioxide–ascorbic acid anti-oxidant system in a model white wine matrix. Journal of the Science of Food and Agriculture, 2004, 84, 318-324.	3.5	30
63	Total Phenolic Content, Antioxidant Activity, and Cross-Cultural Consumer Rejection Threshold in White and Red Wines Functionally Enhanced with Catechin-Rich Extracts. Journal of Agricultural and Food Chemistry, 2012, 60, 388-393.	5.2	29
64	Isomeric Influence on the Oxidative Coloration of Phenolic Compounds in a Model White Wine:Â Comparison of (+)-Catechin and (â^')-Epicatechin. Journal of Agricultural and Food Chemistry, 2005, 53, 9993-9998.	5.2	27
65	Bioprospecting traditional Pakistani medicinal plants for potent antioxidants. Food Chemistry, 2012, 132, 222-229.	8.2	27
66	The quality and volatileâ€profile changes of Longwangmo apricot (<i>Prunus armeniaca</i> L.) kernel oil prepared by different oilâ€producing processes. European Journal of Lipid Science and Technology, 2016, 118, 236-243.	1.5	25
67	Zero effect of multiple dosage of olive leaf supplements on urinary biomarkers of oxidative stress in healthy humans. Nutrition, 2009, 25, 270-280.	2.4	24
68	Formation of Pigment Precursor (+)-1′′-Methylene-6′′-hydroxy-2 <i>H</i> -furan-5′′-one-catechin I from (+)-Catechin and a Degradation Product of Ascorbic Acid in a Model Wine System. Journal of Agricultural and Food Chemistry, 2009, 57, 9539-9546.	somers 5.2	23
69	Assessment of Some Australian Red Wines for Price, Phenolic Content, Antioxidant Activity, and Vintage in Relation to Functional Food Prospects. Journal of Food Science, 2011, 76, C1355-64.	3.1	23
70	Randomized controlled study of the urinary excretion of biophenols following acute and chronic intake of olive leaf supplements. Food Chemistry, 2012, 130, 651-659.	8.2	23
71	Analytical approaches to the determination of simple biophenols in forest trees such as Acer(maple), Betula(birch), Coniferus, Eucalyptus, Juniperus(cedar), Picea(spruce) and Quercus(oak). Analyst, The, 2005, 130, 809.	3.5	22
72	Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chemistry, 2020, 318, 126426.	8.2	22

#	Article	IF	Citations
73	Adsorption of phenols from olive oil waste waters on layered double hydroxide, hydroxyaluminium–iron-co-precipitate and hydroxyaluminium–iron–montmorillonite complex. Applied Clay Science, 2013, 80-81, 154-161.	5.2	21
74	The quality and volatileâ€profile changes of camellia oil (<i>Camellia oleifera</i> Abel) following bleaching. European Journal of Lipid Science and Technology, 2008, 110, 768-775.	1.5	18
75	Steric and Electronic Effects in the First Homoleptic Imino Ether Complex:  Synthesis and X-ray Crystallographic Determination of [Pt(NHC(OEt)Et)4](CF3SO3)2. Inorganic Chemistry, 1997, 36, 5845-5849.	4.0	17
76	Detoxification of olive mill wastewaters by zinc–aluminium layered double hydroxides. Applied Clay Science, 2011, 53, 737-744.	5.2	16
77	Isolation and seasonal effects on characteristics of fulvic acid isolated from an Australian floodplain river and billabong. Journal of Chromatography A, 2007, 1153, 203-213.	3.7	15
78	Differentiation of woodâ€derived vanillin from synthetic vanillin in distillates using gas chromatography/combustion/isotope ratio mass spectrometry for δ ¹³ C analysis. Rapid Communications in Mass Spectrometry, 2018, 32, 311-318.	1.5	15
79	Diplatinum(III) tetrakis(β-diketonato) complexes exemplifying the unsupported Pt–Pt bond. Chemical Communications, 1996, , 2271-2272.	4.1	14
80	Flavour quality critical production steps from fruit to extra-virgin olive oil at consumption. Food Research International, 2013, 54, 2095-2103.	6.2	14
81	Bioavailability of dissolved organic carbon and fulvic acid from an Australian floodplain river and billabong. Marine and Freshwater Research, 2007, 58, 222.	1.3	13
82	Metabolomics as a tool for diagnosis and monitoring in coeliac disease. Metabolomics, 2015, 11, 980-990.	3.0	12
83	Dietary Effects on Stable Carbon Isotope Composition of Fatty Acids in Polar and Neutral Fractions of Intramuscular Fat of Lambs. Journal of Agricultural and Food Chemistry, 2017, 65, 9404-9411.	5.2	12
84	Antioxidant Activity of Phenolic Compounds in Bulk Camellia Oil and Corresponding Oil in Water (O/W) Emulsions. Advance Journal of Food Science and Technology, 2013, 5, 1238-1243.	0.1	11
85	A solid phase microextraction method to fingerprint dissolved organic carbon released from Eucalyptus camaldulensis (Dehnh.) (River Red Gum) leaves. Analytica Chimica Acta, 2005, 530, 325-333.	5.4	10
86	Evaluation of puffing quality of Australian desi chickpeas by different physical attributes. LWT - Food Science and Technology, 2015, 64, 959-965.	5.2	10
87	Different Processing Practices and the Frying Life of Refined Canola Oil. Foods, 2019, 8, 527.	4.3	10
88	Potential Role of Phenolic Extracts of Mentha in Managing Oxidative Stress and Alzheimer's Disease. Antioxidants, 2020, 9, 631.	5.1	10
89	Phytosterol, Tocopherol and Carotenoid Retention during Commercial Processing of Brassica napus (Canola) Oil. Processes, 2022, 10, 580.	2.8	10
90	Nutritional methodologies and their use in inter-disciplinary antioxidant research. Food Chemistry, 2008, 108, 425-438.	8.2	9

#	Article	IF	CITATIONS
91	Impact of ascorbic acid on the oxidative colouration and associated reactions of a model wine solution containing $(+)$ \hat{a} catechin, caffeic acid and iron. Australian Journal of Grape and Wine Research, 2008, 14, 238.	2.1	9
92	Camellia Oil and Tea Oil., 2009,, 313-343.		9
93	The decay of ascorbic acid in a model wine system at low oxygen concentration. Food Chemistry, 2013, 141, 3139-3146.	8.2	9
94	Sensory profiling and preference mapping of Australian puffed desi chickpeas. LWT - Food Science and Technology, 2018, 89, 229-236.	5.2	9
95	Development of a Method Suitable for High-Throughput Screening to Measure Antioxidant Activity in a Linoleic Acid Emulsion. Antioxidants, 2019, 8, 366.	5.1	9
96	Greener extraction of polycyclic aromatic hydrocarbons from soil and sediment using eucalyptus oil. Environmental Chemistry Letters, 2022, 20, 2757-2764.	16.2	8
97	Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch. Toxicology Letters, 2016, 258, 168-174.	0.8	6
98	Leaf micromorphology of 19 Mentha taxa. Australian Journal of Botany, 2019, 67, 463.	0.6	6
99	Neuroprotective Activity of Mentha Species on Hydrogen Peroxide-Induced Apoptosis in SH-SY5Y Cells. Nutrients, 2020, 12, 1366.	4.1	6
100	Occurrence of fumonisin-producing black aspergilli in Australian wine grapes: effects of temperature and water activity on fumonisin production by A. niger and A. welwitschiae. Mycotoxin Research, 2021, 37, 327-339.	2.3	6
101	Allochthonous DOC in floodplain rivers: identifying sources using solid phase microextraction with gas chromatography. Aquatic Sciences, 2007, 69, 472-483.	1.5	5
102	Substrate and TBARS variability in a multi-phase oxidation system. European Journal of Lipid Science and Technology, 2017, 119, 1500500.	1.5	4
103	Effects of Storage Temperature and Duration on Bioactive Concentrations in the Seed and Oil of <i>Brassica napus</i> (Canola). European Journal of Lipid Science and Technology, 2018, 120, 1700335.	1.5	4
104	Bis(N,N-cyclo-heptamethylenedithiocarbamato-S,S')platinum(II), a Platinum Dithiocarbamate Containing a Large Carbocyclic Ring. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 537-539.	0.4	2
105	Volatile Compounds in Australian Olive Oils. , 2010, , 201-209.		2
106	A multiphase experiment for the analysis of bioactive compounds in canola oil: Sources of error from field and laboratory. Chemometrics and Intelligent Laboratory Systems, 2017, 162, 55-64.	3.5	2
107	Complexes of Peptides and Related Molecules with Diammineplatinum (II) as Models for Platinum-Protein Interactions., 1991,, 61-72.		1
108	The Pro-oxidant Activity and Composition of Polar Compound Fractions in Used Deep-frying Camellia Seed Oil. Journal of Food and Nutrition Research (Newark, Del), 2018, 6, 124-129.	0.3	0