Michael B Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335319/publications.pdf Version: 2024-02-01

ΜΙCHAEL Β ΗΛΙΙ

#	Article	IF	CITATIONS
1	Separation, speciation, and mechanism of astatine and bismuth extraction from nitric acid into 1-octanol and methyl anthranilate. Separation and Purification Technology, 2022, 282, 120088.	7.9	10
2	Protonating metal-metal bonds: Changing the metal-metal interaction from bonding, to nonbonding, and to antibonding. Polyhedron, 2022, 212, 115585.	2.2	3
3	Role of High-Spin Species and Pendant Amines in Electrocatalytic Alcohol Oxidation by a Nickel Phosphine Complex. ACS Catalysis, 2022, 12, 2729-2740.	11.2	6
4	Kinetic and Computational Analysis of CO Substitution in a Dinuclear Osmium Carbonyl Complex: Intersection between Dissociative and Dissociative-Interchange Mechanisms. Inorganic Chemistry, 2022, 61, 246-253.	4.0	2
5	Syntheses, Rearrangements, and Structural Analyses of Unsaturated Nitrogen Donor Ligands Derived from Diphenyldiazomethane and the Chiral Rhenium Lewis Acid [(η5·C5H5)Re(NO)(PPh3)]+. Dalton Transactions, 2022, , .	3.3	2
6	Sulfur Reduction Catalyst Design Inspired by Elemental Periodic Expansion Concept for Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 6414-6425.	14.6	37
7	Cooperative redox and spin activity from three redox congeners of sulfur-bridged iron nitrosyl and nickel dithiolene complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
8	Platinum(<scp>ii</scp>) alkyl complexes of chelating dibridgehead diphosphines P((CH ₂) _{<i>n</i>}) ₃ P((i>n = 14, 18, 22); facile <i>cis</i> / <i>trans</i> isomerizations interconverting gyroscope and parachute like adducts. Dalton Transactions, 2021, 50, 12457-12477	3.3	4
9	Toward Frameworks with Multiple Aligned and Interactive Fe(CO) ₃ Rotators: Syntheses and Structures of Diiron Complexes Linked by Two <i>trans</i> Diaxial α,ï‰-Diphosphine Ligands Ar ₂ P(CH ₂) _{<i>n</i>} PAr ₂ . Inorganic Chemistry, 2021, 60. 3314-3330.	4.0	1
10	Computational Investigation of Dichloromethane Ligand Substitution in the Enantiopure Cation [(η ⁵ -C ₅ H ₅)Re(NO)(PPh ₃)(ClCH ₂ Cl)] ^{+<!--<br-->a Functional Equivalent of a Chiral Lewis Acid. Organometallics, 2021, 40, 742-759.}	sup≥x3;	4
11	Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorganic Chemistry, 2021, 60, 7051-7061.	4.0	0
12	Unsupported Lanthanide–Transition Metal Bonds: Ionic vs Polar Covalent?. Inorganic Chemistry, 2021, 60, 9394-9401.	4.0	13
13	Efficient Redox-Neutral Photocatalytic Formate to Carbon Monoxide Conversion Enabled by Long-Range Hot Electron Transfer from Mn-Doped Quantum Dots. Journal of the American Chemical Society, 2021, 143, 10292-10300.	13.7	17
14	Macrocyclic Complexes Derived from Four <i>cis</i> ‣ ₂ Pt Corners and Four Butadiynediyl Linkers; Syntheses, Electronic Structures, and Square versus Skew Rhombus Geometries. Chemistry - A European Journal, 2021, 27, 10021-10039.	3.3	4
15	Frontispiece: Macrocyclic Complexes Derived from Four <i>cis</i> â€L ₂ Pt Corners and Four Butadiynediyl Linkers; Syntheses, Electronic Structures, and Square versus Skew Rhombus Geometries. Chemistry - A European Journal, 2021, 27, .	3.3	0
16	Syntheses, Structures, Reactivities, and Basicities of Quinolinyl and Isoquinolinyl Complexes of an Electron Rich Chiral Rhenium Fragment and Their Electrophilic Addition Products. Chemistry - A European Journal, 2021, 27, 13399-13417.	3.3	2
17	Nickel–Borolide Complexes and Their Complex Electronic Structure. Inorganic Chemistry, 2021, 60, 16160-16167.	4.0	3
18	Silylation of Pyridine, Picolines, and Quinoline with a Zinc Catalyst. ACS Omega, 2020, 5, 1528-1539.	3.5	8

#	Article	IF	CITATIONS
19	Full Conformational Analyses of the Ultrafast Isomerization in Penta-coordinated Ru(S2C2(CF3)2)(CO)(PPh3)2: One Compound, Two Crystal Structures, Three CO Frequencies, 24 Stereoisomers, and 48 Transition States. Inorganic Chemistry, 2020, 59, 11757-11769.	4.0	1
20	Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations. Organometallics, 2020, 39, 3306-3314.	2.3	5
21	Invoking Side-Chain Functionality for the Mediation of Regioselectivity during Ring-Opening Polymerization of Glucose Carbonates. Journal of the American Chemical Society, 2020, 142, 16974-16981.	13.7	34
22	A computational study of hydrogen bonding motifs in halide, tetrafluoroborate, hexafluorophosphate, and tetraarylborate salts of chiral cationic ruthenium and cobalt guanidinobenzimidazole hydrogen bond donor catalysts; acceptor properties of the "BArf―anion. Polyhedron, 2020, 187, 114618.	2.2	11
23	Role of aromatic amino acids in amyloid self-assembly. International Journal of Biological Macromolecules, 2020, 156, 949-959.	7.5	42
24	Astatine partitioning between nitric acid and conventional solvents: indication of covalency in ketone complexation of AtO ⁺ . Chemical Communications, 2020, 56, 9004-9007.	4.1	13
25	Stacking interactions of resonance-assisted hydrogen-bridged rings and C ₆ -aromatic rings. Physical Chemistry Chemical Physics, 2020, 22, 13721-13728.	2.8	8
26	Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catalysis, 2020, 10, 3778-3789.	11.2	22
27	What Is Special about Aromatic–Aromatic Interactions? Significant Attraction at Large Horizontal Displacement. ACS Central Science, 2020, 6, 420-425.	11.3	44
28	Computational Investigations of Enantioselection in Carbon–Carbon Bond Forming Reactions of Ruthenium Guanidinobenzimidazole Second Coordination Sphere Hydrogen Bond Donor Catalysts. Organometallics, 2020, 39, 1149-1162.	2.3	19
29	Triisopropylsilyl (TIPS) Alkynes as Building Blocks for Syntheses of Platinum Triisopropylsilylpolyynyl and Diplatinum Polyynediyl Complexes. Organometallics, 2019, 38, 3294-3310.	2.3	13
30	Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings. A Systematic Study of Crystal Structures and Quantum-Chemical Calculations. Crystal Growth and Design, 2019, 19, 5619-5628.	3.0	8
31	Photoinduced Terminal Hydride of [FeFe]-Hydrogenase Biomimetic Complexes. Inorganic Chemistry, 2019, 58, 13737-13741.	4.0	5
32	Controlling O ₂ Reactivity in Synthetic Analogues of [NiFeS]- and [NiFeSe]-Hydrogenase Active Sites. Journal of the American Chemical Society, 2019, 141, 15338-15347.	13.7	15
33	Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites. Chemical Science, 2019, 10, 1368-1373.	7.4	21
34	Influence of chelate ring type on chelate–chelate and chelate–aryl stacking: the case of nickel bis(dithiolene). Physical Chemistry Chemical Physics, 2019, 21, 1198-1206.	2.8	7
35	Mössbauer Spectroscopy and Theoretical Studies of Iron Bimetallic Complexes Showing Electrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2019, 58, 7069-7077.	4.0	12
36	Stacking interaction potential energy surfaces of square-planar metal complexes containing chelate rings. Advances in Inorganic Chemistry, 2019, , 159-189.	1.0	4

#	Article	IF	CITATIONS
37	Theoretical Analysis of Competing Pathways for Carbon–Hydrogen Activation of Cyclopentadienyl–Triphenylphosphine–Iridium in Benzene. Inorganic Chemistry, 2019, 58, 16553-16558.	4.0	1
38	Origin of Shielding and Deshielding Effects in NMR Spectra of Organic Conjugated Polyynes. Organic Letters, 2019, 21, 753-757.	4.6	19
39	Study of stacking interactions between two neutral tetrathiafulvalene molecules in Cambridge Structural Database crystal structures and by quantum chemical calculations. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 1-7.	1.1	9
40	Recent computational studies on transitionâ€metal carbon–hydrogen bond activation of alkanes. International Journal of Quantum Chemistry, 2018, 118, e25605.	2.0	4
41	Nickel Fluorocarbene Metathesis with Fluoroalkenes. Angewandte Chemie, 2018, 130, 5874-5878.	2.0	11
42	Nickel Fluorocarbene Metathesis with Fluoroalkenes. Angewandte Chemie - International Edition, 2018, 57, 5772-5776.	13.8	25
43	Influence of metal ion on chelate–aryl stacking interactions. International Journal of Quantum Chemistry, 2018, 118, e25629.	2.0	8
44	Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbon–Carbon Bond Formation with Palladium Complexes: A Computational Mechanistic Study. Journal of the American Chemical Society, 2018, 140, 3929-3939.	13.7	12
45	Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society, 2018, 140, 1842-1854.	13.7	27
46	Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catalysis, 2018, 8, 10658-10667.	11.2	47
47	Structural and Electronic Responses to the Three Redox Levels of Fe(NO)N ₂ S ₂ â€Fe(NO) ₂ . Chemistry - A European Journal, 2018, 24, 16003-16008.	3.3	13
48	Cobalt Pincer Complexes in Catalytic C–H Borylation: The Pincer Ligand Flips Rather Than Dearomatizes. ACS Catalysis, 2018, 8, 10606-10618.	11.2	39
49	Towards understanding of lanthanide–transition metal bonding: investigations of the first Ce–Fe bonded complex. Chemical Communications, 2018, 54, 10893-10896.	4.1	32
50	Cyanide Docking and Linkage Isomerism in Models for the Artificial [FeFe]-Hydrogenase Maturation Process. Journal of the American Chemical Society, 2018, 140, 9904-9911.	13.7	7
51	Structure and Magnetization Dynamics of Dyâ^'Fe and Dyâ^'Ru Bonded Complexes. Angewandte Chemie, 2018, 130, 8276-8280.	2.0	3
52	Structure and Magnetization Dynamics of Dyâ^'Fe and Dyâ^'Ru Bonded Complexes. Angewandte Chemie - International Edition, 2018, 57, 8144-8148.	13.8	38
53	Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets. CrystEngComm, 2018, 20, 4506-4514.	2.6	11
54	Comparisons of MN ₂ S ₂ vs. bipyridine as redox-active ligands to manganese and rhenium in (L–L)M′(CO) ₃ Cl complexes. Dalton Transactions, 2017, 46, 5175-5182.	3.3	11

#	Article	IF	CITATIONS
55	Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. Coordination Chemistry Reviews, 2017, 345, 318-341.	18.8	81
56	The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes. Inorganic Chemistry, 2017, 56, 583-593.	4.0	12
57	Interplay of hemilability and redox activity in models of hydrogenase active sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9775-E9782.	7.1	40
58	A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chemical Science, 2017, 8, 8291-8300.	7.4	47
59	Molybdenum Trihydride Complexes: Computational Model of Oxidatively Induced Reductive Elimination of Dihydrogen. Inorganic Chemistry, 2017, 56, 9653-9659.	4.0	2
60	Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis?. Journal of the American Chemical Society, 2017, 139, 18065-18070.	13.7	64
61	Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal, 2017, 23, 11046-11053.	3.3	12
62	Methane Activations by Titanium Neopentylidene Complexes: Electronic Resilience and Steric Control. Inorganic Chemistry, 2017, 56, 9264-9272.	4.0	7
63	Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data. Crystal Growth and Design, 2017, 17, 6353-6362.	3.0	15
64	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10776-10780.	13.8	179
65	Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase. Chemical Science, 2016, 7, 3710-3719.	7.4	20
66	Carbon-hydrogen bond activation by a titanium neopentylidene complex. Journal of Coordination Chemistry, 2016, 69, 1759-1768.	2.2	8
67	Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H ₂ Production Electrocatalysts. Journal of the American Chemical Society, 2016, 138, 12920-12927.	13.7	78
68	The Rich Structural Chemistry Displayed by the Carbon Monoxide as a Ligand to Metal Complexes. Structure and Bonding, 2016, , 199-248.	1.0	10
69	Innenrücktitelbild: Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts (Angew. Chem. 36/2016). Angewandte Chemie, 2016, 128, 11079-11079.	2.0	0
70	Facile Pâ^'C/Câ^'H Bond leavage Reactivity of Nickel Bis(diphosphine) Complexes. Chemistry - A European Journal, 2016, 22, 9493-9497.	3.3	3
71	The stacking interactions of bipyridine complexes: the influence of the metal ion type on the strength of interactions. Journal of Molecular Modeling, 2016, 22, 30.	1.8	7
72	Two-State Reactivity in Low-Valent Iron-Mediated C–H Activation and the Implications for Other First-Row Transition Metals. Journal of the American Chemical Society, 2016, 138, 3715-3730.	13.7	136

#	Article	IF	CITATIONS
73	A Reduced 2Fe2S Cluster Probe of Sulfur–Hydrogen versus Sulfur–Gold Interactions. Angewandte Chemie - International Edition, 2015, 54, 11102-11106.	13.8	9
74	Computational Mechanistic Studies on Reactions of Transition Metal Complexes with Noninnocent Pincer Ligands: Aromatization–Dearomatization or Not. ACS Catalysis, 2015, 5, 1895-1913.	11.2	75
75	Molybdenum Trihydride Complexes: Computational Determinations of Hydrogen Positions and Rearrangement Mechanisms. Inorganic Chemistry, 2015, 54, 6380-6385.	4.0	6
76	Carbon–Hydrogen Bond Activation in Bis(2,6-dimethylbenzenethiolato)tris(trimethylphosphine)ruthenium(II): Ligand Dances and Solvent Transformations. Organometallics, 2015, 34, 3129-3140.	2.3	4
77	Host–Guest Behavior of a Heavy-Atom Heterocycle Re4(CO)16(μ-SbPh2)2(μ-H)2 Obtained from a Palladium-Assisted Ring Opening Dimerization of Re2(CO)8(μ-SbPh2)(μ-H). Inorganic Chemistry, 2015, 54, 3536-3544.	4.0	6
78	Addition of ethylene to a π-conjugated two-dimensional nickel-based organometallic framework with implications for olefin separation. Journal of Molecular Modeling, 2015, 21, 107.	1.8	9
79	Regioselectivity in Ligand Substitution Reactions on Diiron Complexes Governed by Nucleophilic and Electrophilic Ligand Properties. Inorganic Chemistry, 2015, 54, 3523-3535.	4.0	12
80	Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp2 and sp3 C–H Bond Activations. Journal of Organic Chemistry, 2015, 80, 4672-4682.	3.2	58
81	Role of the Chemically Non-Innocent Ligand in the Catalytic Formation of Hydrogen and Carbon Dioxide from Methanol and Water with the Metal as the Spectator. Journal of the American Chemical Society, 2015, 137, 12330-12342.	13.7	67
82	Understanding the Radical Nature of an Oxidized Ruthenium Tris(thiolate) Complex and Its Role in the Chemistry. Journal of the American Chemical Society, 2015, 137, 15616-15619.	13.7	13
83	Influence of the Density Functional and Basis Set on the Relative Stabilities of Oxygenated Isomers of Diiron Models for the Active Site of [FeFe]-Hydrogenase. Journal of Chemical Theory and Computation, 2015, 11, 205-214.	5.3	13
84	Redox active iron nitrosyl units in proton reduction electrocatalysis. Nature Communications, 2014, 5, 3684.	12.8	58
85	Theoretical investigation on the reaction of HS+ with CH3NH2. Chemical Papers, 2014, 68, .	2.2	2
86	Origins of Selective C(sp ²)–H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoretical–Experimental Study. ACS Catalysis, 2014, 4, 649-656.	11.2	51
87	Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study. Journal of the American Chemical Society, 2014, 136, 383-395.	13.7	85
88	Carbon–Hydrogen Activation of Cycloalkanes by Cyclopentadienylcarbonylrhodium—A Lifetime Enigma. Journal of the American Chemical Society, 2014, 136, 8614-8625.	13.7	32
89	Computational study of the cycloaddition reactivity of the osmium silylyne. Inorganica Chimica Acta, 2014, 422, 40-46.	2.4	3
90	Computational Exploration of Alternative Catalysts for Olefin Purification: Cobalt and Copper Analogues Inspired by Nickel Bis(dithiolene) Electrocatalysis. Inorganic Chemistry, 2014, 53, 9679-9691.	4.0	18

#	Article	IF	CITATIONS
91	Theoretical investigation on the mechanism of FeCl3-catalysed cross-coupling reaction of alcohols with alkenes. Molecular Physics, 2014, 112, 2107-2113.	1.7	1
92	Uptake of One and Two Molecules of 1,3-Butadiene by Platinum Bis(dithiolene): A Theoretical Study. Inorganic Chemistry, 2014, 53, 9692-9702.	4.0	16
93	Intramolecular Iron-Mediated C–H Bond Heterolysis with an Assist of Pendant Base in a [FeFe]-Hydrogenase Model. Journal of the American Chemical Society, 2014, 136, 16817-16823.	13.7	38
94	Ambidentate Thiocyanate and Cyanate Ligands in Dinitrosyl Iron Complexes. Inorganic Chemistry, 2013, 52, 2119-2124.	4.0	39
95	Understanding Pd–Pd Bond Length Variation in (PNP)Pd–Pd(PNP) Dimers. Inorganic Chemistry, 2013, 52, 2317-2322.	4.0	15
96	The mechanism of addition of aldehydes to germene in different solvents: A DFT study. Journal of Organometallic Chemistry, 2013, 748, 8-12.	1.8	4
97	Comparative Insight into Electronic Properties and Reactivities toward C–H Bond Activation by Iron(IV)–Nitrido, Iron(IV)–Oxo, and Iron(IV)–Sulfido Complexes: A Theoretical Investigation. Inorganic Chemistry, 2013, 52, 2684-2696.	4.0	23
98	Apparent Anti-Woodward–Hoffmann Addition to a Nickel Bis(dithiolene) Complex: The Reaction Mechanism Involves Reduced, Dimetallic Intermediates. Inorganic Chemistry, 2013, 52, 3711-3723.	4.0	28
99	A mechanism for the addition of ethylene to nickel bisâ€dithiolene. International Journal of Quantum Chemistry, 2013, 113, 1621-1625.	2.0	12
100	Stacking Interactions of Ni(acac) Chelates with Benzene: Calculated Interaction Energies. ChemPhysChem, 2013, 14, 1797-1800.	2.1	16
101	Carbon Monoxide Induced Reductive Elimination of Disulfide in an N-Heterocyclic Carbene (NHC)/ Thiolate Dinitrosyl Iron Complex (DNIC). Journal of the American Chemical Society, 2013, 135, 8423-8430.	13.7	25
102	Analysis of an alternative to the H-atom abstraction mechanism in methane C–H bond activation by nonheme iron(iv)-oxo oxidants. Dalton Transactions, 2013, 42, 10260.	3.3	15
103	Investigating the Electronic Structure of the Atox1 Copper(I) Transfer Mechanism with Density Functional Theory. Inorganic Chemistry, 2013, 52, 10387-10393.	4.0	6
104	The Osmium–Silicon Triple Bond: Synthesis, Characterization, and Reactivity of an Osmium Silylyne Complex. Journal of the American Chemical Society, 2013, 135, 11780-11783.	13.7	62
105	Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions. Journal of Chemical Physics, 2013, 138, 214301.	3.0	17
106	The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(iv)–oxo complexes. Physical Chemistry Chemical Physics, 2012, 14, 12863.	2.8	19
107	The Mechanism of Alkene Addition to a Nickel Bis(dithiolene) Complex: The Role of the Reduced Metal Complex. Journal of the American Chemical Society, 2012, 134, 4481-4484.	13.7	41
108	α-Cleavage of Phenyl Groups from GePh ₃ Ligands in Iridium Carbonyl Cluster Complexes. A Mechanism and Its Role in the Synthesis of Bridging Germylene Ligands. Organometallics, 2012, 31, 2621-2630.	2.3	14

#	Article	IF	CITATIONS
109	Bonding and Reactivity in the Electronically Unsaturated Hydrogen-Bridged Dimer [Ru ₃ (CO) ₈ (μ ₃ -CMe)(μ-H) ₂ (μ ₃ -H)] _{2< Organometallics, 2012, 31, 50-53.}	\ଅହ>.	4
110	Computational Insights into Uranium Complexes Supported by Redox-Active α-Diimine Ligands. Inorganic Chemistry, 2012, 51, 2058-2064.	4.0	25
111	Structural and Spectroscopic Features of Mixed Valent Fe ^{II} Fe ^I Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase. Journal of the American Chemical Society, 2012, 134, 13089-13102.	13.7	81
112	Computational Studies on Ethylene Addition to Nickel Bis(dithiolene). Journal of Physical Chemistry A, 2012, 116, 476-482.	2.5	37
113	Comparison of the FeO ²⁺ and FeS ²⁺ complexes in the cyanide and isocyanide ligand environment for methane hydroxylation. Journal of Computational Chemistry, 2012, 33, 1448-1457.	3.3	4
114	Diruthenium Naphthalene and Anthracene Complexes Containing a Doubly Linked Dicyclopentadienyl Ligand. Organometallics, 2012, 31, 4838-4848.	2.3	14
115	Combined experimental and theoretical investigation into C–H activation of cyclic alkanes by Cp′Rh(CO)2 (Cp′ = η5-C5H5 or η5-C5Me5). Dalton Transactions, 2011, 40, 1751.	3.3	18
116	cis-Dithiolatonickel as metalloligand to dinitrosyl iron units: the di-metallic structure of Ni(μ-SR)[Fe(NO)2] and an unexpected, abbreviated metalloadamantyl cluster, Ni2(μ-SR)4[Fe(NO)2]3. Dalton Transactions, 2011, 40, 6047.	3.3	17
117	Tetrarhena-heterocycle from the Palladium-Catalyzed Dimerization of Re ₂ (CO) ₈ (μ-SbPh ₂)(μ-H) Exhibits an Unusual Host–Guest Behavior. Journal of the American Chemical Society, 2011, 133, 12994-12997.	13.7	144
118	Computational Investigation of the Concerted Dismutation of Chlorite Ion by Water-Soluble Iron Porphyrins. Inorganic Chemistry, 2011, 50, 7928-7930.	4.0	19
119	Carbon–Bromine Bond Formation through a Nickel-Centered Spin-Crossing Mechanism. Organometallics, 2011, 30, 6365-6371.	2.3	19
120	Allyl Ligand Reactivity in Tantalum(V) Compounds: Experimental and Computational Evidence for Allyl Transfer to the Formamidinate Ligand in <i>fac</i> -Ta(NMe ₂) ₃ (η ¹ -allyl)[^{<i>i</i>via a Metallo-Claisen Rearrangement. Organometallics, 2011, 30, 5832-5843.}	′i>²;³sup>	Pr] ⁷
121	Modeling Structures and Vibrational Frequencies for Dinitrosyl Iron Complexes (DNICs) with Density Functional Theory. Inorganic Chemistry, 2011, 50, 8532-8540.	4.0	37
122	Observation of Inductive Effects That Cause a Change in the Rate-Determining Step for the Conversion of Rhenium Azides to Imido Complexes. Inorganic Chemistry, 2011, 50, 10505-10514.	4.0	16
123	Self-Assembly of Dinitrosyl Iron Units into Imidazolate-Edge-Bridged Molecular Squares: Characterization Including MA¶ssbauer Spectroscopy. Journal of the American Chemical Society, 2011, 133, 20426-20434.	13.7	40
124	Density Functional Calculations on Protonation of the [FeFe]â€Hydrogenase Model Complex Fe ₂ (μâ€pdt)(CO) ₄ (PMe ₃) ₂ and Subsequent Isomerization Pathways. European Journal of Inorganic Chemistry, 2011, 2011, 1080-1093.	2.0	37
125	Computational Investigations into Hydrogen-Atom Abstraction from Rhodium Hydride Complexes by Methyl Radicals in Aqueous Solution. European Journal of Inorganic Chemistry, 2011, 2011, 4901-4905.	2.0	1
126	Theoretical study on the reaction of PH+ with H2O. Computational and Theoretical Chemistry, 2011, 966, 328-333.	2.5	0

#	Article	IF	CITATIONS
127	Mechanism of electrocatalytic hydrogen production by a di-iron model of iron–iron hydrogenase: A density functional theory study of proton dissociation constants and electrode reduction potentials. Dalton Transactions, 2010, 39, 3093.	3.3	73
128	Analysis of a Pentacoordinate Iron Dicarbonyl as Synthetic Analogue of the Hmd or Monoâ€Iron Hydrogenase Active Site. Chemistry - A European Journal, 2010, 16, 3083-3089.	3.3	69
129	Oxygen atom transfer catalysis: Ligand effects on the key reaction barrier in molybdenum (VI) dioxo systemsâ~†. Journal of Molecular Catalysis A, 2010, 324, 15-23.	4.8	11
130	Unexpected μ-oxo five-member ring intermediates for oxygen atom transfer between osmium complexes. Journal of Coordination Chemistry, 2010, 63, 2846-2853.	2.2	0
131	Understanding the factors affecting the activation of alkane by Cp [′] Rh(CO) ₂ (Cp [′] Â=ÂCp or Cp*). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20178-20183.	7.1	43
132	Mechanism of Water Splitting and Oxygenâ^'Oxygen Bond Formation by a Mononuclear Ruthenium Complex. Journal of the American Chemical Society, 2010, 132, 120-130.	13.7	133
133	Thermal Decomposition Pathways of Hydroxylamine: Theoretical Investigation on the Initial Steps. Journal of Physical Chemistry A, 2010, 114, 9262-9269.	2.5	52
134	Crystallographic Evidence of a Base-Free Uranium(IV) Terminal Oxo Species. Inorganic Chemistry, 2010, 49, 7620-7622.	4.0	72
135	Ortho-Metalation Dynamics and Ligand Fluxionality in the Conversion of Os ₃ (CO) ₁₀ (dppm) to HOs ₃ (CO) ₈ [1/4-PhP(C ₆ H ₄ -î1/4 ₂ ,î+ ¹ Experimental and DFT Evidence for the Participation of Agostic Câ ² H and I€-Aryl Intermediates at an)@ I.I x sub	>28ھub>PP
136	Origins of the Selectivity for Borylation of Primary over Secondary Câ^'H Bonds Catalyzed by Cp*-Rhodium Complexes. Journal of the American Chemical Society, 2010, 132, 3078-3091.	13.7	110
137	Potential Hydrogen Bottleneck in Nickelâ^'Iron Hydrogenase. Inorganic Chemistry, 2010, 49, 6378-6380.	4.0	29
138	Density Functional Study of the Thermodynamics of Hydrogen Production by Tetrairon Hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a Hydrogenase Model. Inorganic Chemistry, 2010, 49, 5737-5747.	4.0	20
139	Density Functional Theory Applied to a Difference in Pathways Taken by the Enzymes Cytochrome P450 and Superoxide Reductase: Spin States of Ferric Hydroperoxo Intermediates and Hydrogen Bonds from Water. Inorganic Chemistry, 2010, 49, 188-198.	4.0	15
140	Generalized molecular orbital theory: Ground state and ionization potentials of water and dinitrogen. International Journal of Quantum Chemistry, 2009, 16, 195-203.	2.0	0
141	Density functional theory study of the mechanism for Ni(NHC)2 catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage. Journal of Organometallic Chemistry, 2009, 694, 2831-2838.	1.8	35
142	The molecular and electronic structure of carbon–hydrogen bond activation and transition metal assisted hydrogen transfer. Coordination Chemistry Reviews, 2009, 253, 1202-1218.	18.8	76
143	Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Feâ~H ^{δâ^'} ···H ^{δ+} â^'O, Bond and Methenyl-H ₄ MPT ⁺ Trigge Hydride Transfer. Journal of the American Chemical Society, 2009, 131, 10901-10908.	retb.7	158
144	Density Functional Theory Study of the Reaction Mechanism for Competitive Carbonâ^'Hydrogen and Carbonâ^'Halogen Bond Activations Catalyzed by Transition Metal Complexes. Journal of Physical Chemistry A, 2009, 113, 2152-2157.	2.5	9

#	Article	IF	CITATIONS
145	Kinetic Câ^'H Oxidative Addition vs Thermodynamic Câ^'X Oxidative Addition of Chlorobenzene by a Neutral Rh(I) System. A Density Functional Theory Study. Journal of Physical Chemistry A, 2009, 113, 11706-11712.	2.5	13
146	Sulfur Oxygenates of Biomimetics of the Diiron Subsite of the [FeFe]-Hydrogenase Active Site: Properties and Oxygen Damage Repair Possibilities. Journal of the American Chemical Society, 2009, 131, 8296-8307.	13.7	69
147	Transformations and Reactions of Re2(CO)8(μ-SbPh2)(μ-H) Induced by the Addition of a Platinum(tri-t-butylphosphine) Group. Inorganic Chemistry, 2009, 48, 652-662.	4.0	15
148	Monomeric and Oligomeric Amineâ `Borane Ïf-Complexes of Rhodium. Intermediates in the Catalytic Dehydrogenation of Amineâ `Boranes. Journal of the American Chemical Society, 2009, 131, 15440-15456.	13.7	183
149	Carbon–hydrogen vs. carbon–halogen oxidative addition of chlorobenzene by a neutral iridium complex explored by DFT. Dalton Transactions, 2009, , 5933.	3.3	21
150	Carbon–hydrogen vs. carbon–halogen oxidative addition of chlorobenzene to a cationic iridium(I) system — A density functional theory study. Canadian Journal of Chemistry, 2009, 87, 1460-1469.	1.1	5
151	Theoretical study of the biologically important dioxo diiron diamond core structures. Theoretical Chemistry Accounts, 2008, 120, 467-478.	1.4	2
152	A reexamination of the propensities of amino acids towards a particular secondary structure: classification of amino acids based on their chemical structure. Journal of Molecular Modeling, 2008, 14, 769-775.	1.8	67
153	Density functional study of the complete pathway for the Heck reaction with palladium diphosphines. Journal of Organometallic Chemistry, 2008, 693, 1552-1563.	1.8	60
154	Disulfido iron–manganese carbonyl cluster complexes: Synthesis, structure, bonding and properties of the radical CpFeMn2(CO)7(μ3-S2)2. Journal of Organometallic Chemistry, 2008, 693, 2732-2738.	1.8	10
155	Density functional theory on the larger active site models for [NiFe] hydrogenases: Two-state reactivity?. Comptes Rendus Chimie, 2008, 11, 790-804.	0.5	39
156	Regioselective 12CO/13CO exchange activity of a mixed-valent Fe(ii)Fe(i) model of the Hox state of [FeFe]-hydrogenase. Chemical Communications, 2008, , 1563.	4.1	26
157	A New Mechanism for the Conversion of Transition Metal Azides to Imido Complexes. Journal of the American Chemical Society, 2008, 130, 16452-16453.	13.7	22
158	The Catalytic Dehydrogenation of Ammonia-Borane Involving an Unexpected Hydrogen Transfer to Ligated Carbene and Subsequent Carbonâ^'Hydrogen Activation. Journal of the American Chemical Society, 2008, 130, 1798-1799.	13.7	135
159	Activation of Hydrogen and Related Small Molecules by the Unsaturated Cluster Complex PtOs ₃ (CO) ₇ (PBu ^t ₃)(μ-PBu ^t _{)(Î Organometallics, 2008, 27, 4938-4947.}	⁄4œαb>4∢	⟨sub>-CHCIV
160	Trigger Mechanism for the Catalytic Hydrogen Activation by Monoiron (Ironâ^`Sulfur Cluster-Free) Hydrogenase. Journal of the American Chemical Society, 2008, 130, 14036-14037.	13.7	52
161	Series of Mixed Valent Fe(II)Fe(I) Complexes That Model the H _{ox} State of [FeFe]Hydrogenase: Redox Properties, Density-Functional Theory Investigation, and Reactivities with Extrinsic CO. Inorganic Chemistry, 2008, 47, 7009-7024.	4.0	111
162	Refining the Active Site Structure of Ironâ^'Iron Hydrogenase Using Computational Infrared Spectroscopy. Inorganic Chemistry, 2008, 47, 2380-2388.	4.0	40

#	Article	IF	CITATIONS
163	Probing the Mechanism of Carbonâ^'Hydrogen Bond Activation by Photochemically Generated Hydridotris(pyrazolyl)borato Carbonyl Rhodium Complexes: New Experimental and Theoretical Investigations. Organometallics, 2008, 27, 189-201.	2.3	29

Linkage Isomerization Reactions of M(CO)2L Complexes (M = ($\hat{i}\cdot 5-C5H5$)Mn, ($\hat{i}\cdot 5-C5H5$)Re, or ($\hat{i}\cdot 6-C6H6$)Cr; L =) Tj ETQq0 0 0 rgBT /Over 12

165	Density Functional Theory Investigation into the Mechanism for η2-Alkyne to Vinylidene Isomerization by the Addition of Phenylacetylene to [(η3-C3H5)Rh(PiPr3)2]. Organometallics, 2008, 27, 4325-4333.	2.3	34
166	Theoretical Study of Alternative Pathways for the Heck Reaction through Dipalladium and "Ligand-Free―Palladium Intermediates. Organometallics, 2008, 27, 6222-6232.	2.3	60
167	Computational Studies of [NiFe] and [FeFe] Hydrogenases. Chemical Reviews, 2007, 107, 4414-4435.	47.7	383
168	Carbonâ^'Hydrogen Bond Activation in Hydridotris(pyrazolyl)borate Platinum(IV) Complexes: Comparison of Density Functionals, Basis Sets, and Bonding Patterns. Journal of Chemical Theory and Computation, 2007, 3, 2268-2281.	5.3	14
169	Carbonâ^'Hydrogen Bond Activation:  Two, Three, or More Mechanisms?. Journal of the American Chemical Society, 2007, 129, 12068-12069.	13.7	100
170	Synthesis, Characterization, and Electronic Structures of a Series of Two-Dimensional Trimetallic Cluster Complexes, Ru ₃ (CO) ₉ (μ-SnPh ₂) ₃ [Pt(PBu <i>^t</i> _{3< <i>x</i>= 0â^3. Journal of the American Chemical Society, 2007, 129, 12328-12340.}	/ 13.7 /sub>)] <i:< td=""><td>> ³⁷ > _x</td></i:<>	> ³⁷ > _x
171	Assignment of Molecular Structures to the Electrochemical Reduction Products of Diiron Compounds Related to [Feâ``Fe] Hydrogenase:Â A Combined Experimental and Density Functional Theory Study. Inorganic Chemistry, 2007, 46, 384-394.	4.0	73
172	Synthesis of Carboxylic Acid-Modified [FeFe]-Hydrogenase Model Complexes Amenable to Surface Immobilization. Organometallics, 2007, 26, 3976-3984.	2.3	115
173	An Apparent Violation of Microscopic Reversibility:Â Mechanisms for Ligand Substitution Reactions of Oxorhenium(V) Dithiolate Complexes. Journal of the American Chemical Society, 2007, 129, 1560-1567.	13.7	16
174	A unique coplanar multi-center bonding network in doubly acetylide-bridged binuclear zirconocene complexes: A density functional theory study. Journal of Organometallic Chemistry, 2007, 692, 4760-4767.	1.8	2
175	Photoreversible Multiple Additions of Hydrogen to a Highly Unsaturated Platinumâ^'Rhenium Cluster Complex. Journal of the American Chemical Society, 2007, 129, 986-1000.	13.7	40
176	Unsaturated Platinumâ^'Rhenium Cluster Complexes. Synthesis, Structures and Reactivity. Journal of the American Chemical Society, 2007, 129, 5981-5991.	13.7	28
177	Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory. Journal of Biological Inorganic Chemistry, 2007, 12, 751-760.	2.6	22
178	Computational definition of a mixed valent Fe(II)Fe(I) model of the [FeFe]hydrogenase active site resting state. Journal of Inorganic Biochemistry, 2007, 101, 1752-1757.	3.5	48
179	Synthesis, Reactivity, and DFT Studies of Tantalum Complexes Incorporating Diamido-N-heterocyclic Carbene Ligands. Facile Endocyclic Câ^'H Bond Activation. Journal of the American Chemical Society, 2006, 128, 12531-12543.	13.7	87
180	Hydrogen-Substituted Osmium Silylene Complexes:Â Effect of Charge Localization on Catalytic Hydrosilation. Journal of the American Chemical Society, 2006, 128, 428-429.	13.7	128

#	Article	IF	CITATIONS
181	Do B3LYP and CCSD(T) Predict Different Hydrosilylation Mechanisms? Influences of Theoretical Methods and Basis Sets on Relative Energies in Rutheniumâ°'Silylene-Catalyzed Ethylene Hydrosilylation. Journal of Physical Chemistry A, 2006, 110, 1416-1425.	2.5	24
182	De Novo Design of Synthetic Di-Iron(I) Complexes as Structural Models of the Reduced Form of Ironâ^'Iron Hydrogenase. Inorganic Chemistry, 2006, 45, 1552-1559.	4.0	145
183	The reaction of electrophiles with models of iron–iron hydrogenase: A switch in regioselectivity. Computational and Theoretical Chemistry, 2006, 771, 123-128.	1.5	13
184	Density functional study of the catalytic cycle of nickel–iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). Journal of Biological Inorganic Chemistry, 2006, 11, 286-306.	2.6	83
185	Mechanistic Investigation of the Oxygen-Atom-Transfer Reactivity of Dioxo-molybdenum(VI) Complexes. Chemistry - A European Journal, 2006, 12, 7501-7509.	3.3	56
186	Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: Models of the iron–iron hydrogenase enzyme active site. Journal of Computational Chemistry, 2006, 27, 1454-1462.	3.3	36
187	The Activation of Dihydrogen. , 2006, , 121-158.		17
188	Mechanistic Insights into Iridium-Catalyzed Asymmetric Hydrogenation of Dienes. Chemistry - A European Journal, 2005, 11, 6859-6868.	3.3	95
189	Better than platinum? Fuel cells energized by enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16911-16912.	7.1	67
190	Forty years of Fenske-Hall molecular orbital theory. , 2005, , 1143-1165.		13
191	Electronic and Steric Effects on Molecular Dihydrogen Activation in [Cp*OsH4(L)]+(L = PPh3, AsPh3,) Tj ETQq1 1	0,78431 13.7	4 rggT /Over
192	Dual Electron Uptake by Simultaneous Iron and Ligand Reduction in an N-Heterocyclic Carbene Substituted [FeFe] Hydrogenase Model Compound. Inorganic Chemistry, 2005, 44, 5550-5552.	4.0	136
193	Urea decomposition facilitated by a urease model complex: a theoretical investigation. Dalton Transactions, 2005, , 3542.	3.3	17
194	Rhodium Boryl Complexes in the Catalytic, Terminal Functionalization of Alkanes. Journal of the American Chemical Society, 2005, 127, 2538-2552.	13.7	317
195	The Competition between Allene and Butadiene in the Carbonâ~'Hydrogen Bond Activation Initiated by a Tungsten Allyl Complex:Â A DFT Study. Organometallics, 2005, 24, 3827-3835.	2.3	21
196	High Nuclearity Iridiumâ^'Platinum Clusters:Â Synthesis, Structures, Bonding, and Reactivity. Journal of the American Chemical Society, 2005, 127, 1007-1014.	13.7	34
197	Rhodium Silyl Boryl Hydride Complexes: Comparison of Bonding and the Rates of Elimination of Borane, Silane, and Dihydrogen. Angewandte Chemie - International Edition, 2004, 43, 5474-5477.	13.8	41
198	Density Functional Studies of Iridium-Catalyzed Alkane Dehydrogenation. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
199	Density Functional Calculations on the Conversion of Azide and Carbon Monoxide to Isocyanate and Dinitrogen by a Nickel to Sulfur Rebound Mechanism. Chemistry - A European Journal, 2004, 10, 1805-1814.	3.3	13
200	Electronic Effects Steer the Mechanism of Asymmetric Hydrogenations of Unfunctionalized Aryl-Substituted Alkenes. Journal of the American Chemical Society, 2004, 126, 16688-16689.	13.7	150
201	Quantum Mechanical Models of the Resting State of the Vanadium-Dependent Haloperoxidase. Inorganic Chemistry, 2004, 43, 4127-4136.	4.0	58
202	Structures and Energetics of Models for the Active Site of Acetyl-Coenzyme A Synthase:Â Role of Distal and Proximal Metals in Catalysis. Journal of the American Chemical Society, 2004, 126, 3410-3411.	13.7	59
203	Reaction of the 1,8-Bis(diphenylmethylium)naphthalenediyl Dication with Fluoride:  Formation of a Cation Containing a Câ^'F→C Bridge. Journal of the American Chemical Society, 2004, 126, 8189-8196.	13.7	43
204	Dinuclear Ruthenium and Iron Complexes Containing Palladium and Platinum with Tri-tert-Butylphosphine Ligands:Â Synthesis, Structures, and Bonding. Inorganic Chemistry, 2004, 43, 3921-3929.	4.0	30
205	Reaction Products of W(CO)6with Formamidines; Electronic Structure of a W2(μ-CO)2Core with Unsymmetric Bridging Carbonyls. Inorganic Chemistry, 2004, 43, 6954-6964.	4.0	18
206	A Theoretical Investigation of Ruthenium-Catalyzed Alkene Hydrosilation:Â Evidence To Support an Exciting New Mechanistic Proposal. Journal of the American Chemical Society, 2004, 126, 13564-13565.	13.7	77
207	Superloading of Tin Ligands into Rhodium and Iridium Carbonyl Cluster Complexes. Inorganic Chemistry, 2004, 43, 7576-7578.	4.0	66
208	Bimetallic Cluster Complexes:Â The Synthesis, Structures, and Bonding of Ruthenium Carbonyl Cluster Complexes Containing Palladium and Platinum with the Bulky Tri-tert-butyl-phosphine Ligand. Journal of the American Chemical Society, 2004, 126, 5253-5267.	13.7	64
209	Nickelâ^Manganese Sulfido Carbonyl Cluster Complexes. Synthesis, Structure, and Properties of the Unusual Paramagnetic Complexes Cp2Ni2Mn(CO)3(μ3-E)2, E = S, Se. Inorganic Chemistry, 2004, 43, 2515-2525.	4.0	32
210	SYNERGY BETWEEN THEORY AND EXPERIMENT AS APPLIED TO H/D EXCHANGE ACTIVITY ASSAYS IN [Fe]H2ase ACTIVE SITE MODELS. Advances in Inorganic Chemistry, 2004, , 1-26.	1.0	9
211	Density Functional Studies of Catalytic Alkane Dehydrogenation by an Iridium Pincer Complex with and without a Hydrogen Acceptor. ChemInform, 2003, 34, no.	0.0	0
212	Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site. Coordination Chemistry Reviews, 2003, 238-239, 255-266.	18.8	186
213	De Novo design in organometallic chemistry: stabilizing iridium(V). Coordination Chemistry Reviews, 2003, 238-239, 315-331.	18.8	28
214	DENSITY FUNCTIONAL STUDIES OF IRIDIUM CATALYZED ALKANE DEHYDROGENATION. Advances in Inorganic Chemistry, 2003, , 321-349.	1.0	8
215	Experimental and Computational Evidence for a Boron-Assisted, Ï <i>f</i> -Bond Metathesis Pathway for Alkane Borylation. Journal of the American Chemical Society, 2003, 125, 858-859.	13.7	177
216	The role of triplet states in the long wavelength absorption region of bromine nitrate. Journal of Chemical Physics, 2003, 119, 7864-7870.	3.0	5

#	Article	IF	CITATIONS
217	High-Spin Ni(II), a Surprisingly Good Structural Model for [NiFe] Hydrogenase. Journal of the American Chemical Society, 2002, 124, 394-395.	13.7	43
218	How Electron Flow Controls the Thermochemistry of the Addition of Olefins to Nickel Dithiolenes:Â Predictions by Density Functional Theory. Journal of the American Chemical Society, 2002, 124, 12076-12077.	13.7	48
219	Carbon–hydrogen bond activation in cyclopentadienyl dimethyl tungsten nitrosyl and carbonylBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany.ÂTheoretical studies of inorganic and organometallic reaction mechanisms. Part 21.1. Dalton Transactions RSC. 2002. , 713-718.	2.3	11
220	IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. Journal of Biological Inorganic Chemistry, 2002, 7, 318-326.	2.6	78
221	Density functional studies of catalytic alkane dehydrogenation by an iridium pincer complex with and without a hydrogen acceptor. Journal of Molecular Catalysis A, 2002, 189, 111-118.	4.8	15
222	Factors affecting the structure of substituted tris(pyrazolyl)borate rhodium dicarbonyl complexes. Inorganica Chimica Acta, 2002, 330, 268-282.	2.4	21
223	The vibrational spectrum of Tp3,5-MeRhH2(H2): a computational and inelastic neutron scattering study. Inorganica Chimica Acta, 2002, 330, 240-249.	2.4	9
224	Modeling the Active Sites in Metalloenzymes. 3. Density Functional Calculations on Models for [Fe]-Hydrogenase:Â Structures and Vibrational Frequencies of the Observed Redox Forms and the Reaction Mechanism at the Diiron Active Center. Journal of the American Chemical Society, 2001, 123, 3734-3742.	13.7	169
225	Modeling the Active Sites of Metalloenzymes. 4. Predictions of the Unready States of [NiFe]Desulfovibrio gigasHydrogenase from Density Functional Theory. Inorganic Chemistry, 2001, 40, 18-24.	4.0	61
226	The Theoretical Transition State Structure of a Model Complex Bears a Striking Resemblance to the Active Site Structure of DMSO Reductase. Journal of the American Chemical Society, 2001, 123, 5820-5821.	13.7	81
227	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 18. Catalytic Transfer Dehydrogenation of Alkanes by an Iridium(III) Pincer Complex. Organometallics, 2001, 20, 2153-2160.	2.3	38
228	A Capable Bridging Ligand for Fe-Only Hydrogenase:Â Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. Journal of the American Chemical Society, 2001, 123, 3828-3829.	13.7	334
229	Modeling the Active Sites in Metalloenzymes 5. The Heterolytic Bond Cleavage of H2in the [NiFe] Hydrogenase ofDesulfovibrio gigasby a Nucleophilic Addition Mechanism. Inorganic Chemistry, 2001, 40, 6201-6203.	4.0	61
230	Minimum Energy Structure of Hydridotris(pyrazolyl)borato Iridium(V) Tetrahydride Is Not aC3vCapped Octahedron. Journal of the American Chemical Society, 2001, 123, 9822-9829.	13.7	20
231	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 19. Substitution Reaction in Cyclopentadienyl Metal Dicarbonyls. Organometallics, 2001, 20, 5724-5730.	2.3	20
232	A Theoretical Study of the Primary Oxo Transfer Reaction of a Dioxo Molybdenum(VI) Compound with Imine Thiolate Chelating Ligands:Â A Molybdenum Oxotransferase Analogue. Journal of the American Chemical Society, 2001, 123, 3995-4002.	13.7	63
233	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 20. Carbonâ~'Hydrogen and Carbonâ~'Carbon Bond Activation of Cyclopropane by Cationic Iridium(III) and Neutral Rhodium(I) and Iridium(I) Complexes. Organometallics, 2001, 20, 5606-5613.	2.3	27
234	Determination of copper binding sites in peptides containing basic residues: a combined experimental and theoretical study. International Journal of Mass Spectrometry, 2001, 204, 31-46.	1.5	42

#	ARTICLE Internally Stable Homogeneous Catalysts for Alkane Dehydrogenation S.O. thanks the German	IF	CITATIONS
235	Academic Exchange Service (DAAD) for financing a research stay with W.C.K. in the USA. This work was supported by the National Science Foundation (CHE 9800184 to M.B.H.), by the University of California Energy Institute and University of California Santa Barbara (to W.C.K.), and by the German Research Association (DFG, to M.W.H). We thank Dr. R. Mynott and Mrs. C. Wirtz, MPI fżr Kohlenforschung, for	13.8	175
236	NMR spectroscopic in. Angewandte Chemie - International Edition, 2001, 40, 3596. Recent theoretical predictions of the active site for the observed forms in the catalytic cycle of Ni-Fe hydrogenase. Journal of Biological Inorganic Chemistry, 2001, 6, 467-473.	2.6	32
237	Benzene chromium tricarbonyl revisited: Theoretical study of the structure and dynamics of (?6-C6H6)Cr(CO)3. International Journal of Quantum Chemistry, 2000, 77, 152-160.	2.0	31
238	Perspective on "The spectra and electronic structure of the tetrahedral ions MnO â^' 4 , CrO â^' 4 , and ClO â^' 4 ". Theoretical Chemistry Accounts, 2000, 103, 221-224.	1.4	7
239	Theoretical Studies on Reactions of Transition-Metal Complexes. Chemical Reviews, 2000, 100, 353-406.	47.7	811
240	Theoretical Study of the Thermal Decomposition ofN,Nâ€~-Diacyl-N,Nâ€~-Dialkoxyhydrazines: A Comparison of HF, MP2, and DFT. Journal of Physical Chemistry A, 2000, 104, 6247-6252.	2.5	15
241	Transition Metal Polyhydride Complexes. 10. Intramolecular Hydrogen Exchange in the Octahedral Iridium(III) Dihydrogen Dihydride Complexes IrXH2(η2-H2)(PR3)2(X = Cl, Br, I). Journal of the American Chemical Society, 2000, 122, 2903-2910.	13.7	38
242	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 16. Oxidative Promotion of the Migratory Insertion of Carbon Monoxide in Cyclopentadienylmethyldicarbonyliron (II). Journal of Physical Chemistry A, 2000, 104, 7324-7332.	2.5	11
243	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 17. Unprecedented Câ^C Bond Activation at Rhodium(I) and Iridium(I). Organometallics, 2000, 19, 3338-3346.	2.3	23
244	On the Behavior of α,β-Unsaturated Thioaldehydes and Thioketones in the Dielsâ^'Alder Reaction. Journal of Organic Chemistry, 2000, 65, 6601-6612.	3.2	33
245	Benzene chromium tricarbonyl revisited: Theoretical study of the structure and dynamics of (η6-C6H6)Cr(CO)3. , 2000, 77, 152.		1
246	Perspective on "The spectra and electronic structure of the tetrahedral ions MnO 4 â^' , CrO 4 â^' , and ClO 4 â^' ― , 2000, , 221-224.		2
247	On the origin of apparently short carbon–carbon double bonds in transition-metal vinyl complexes. Polyhedron, 1999, 18, 1717-1724.	2.2	7
248	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms 13: Methane, Ethylene, and Acetylene Activation at a Cationic Iridium Center. ACS Symposium Series, 1999, , 138-150.	0.5	6
249	Prediction of the Geometries of Simple Transition Metal Polyhydride Complexes by Symmetry Analysis. Journal of the American Chemical Society, 1999, 121, 1348-1358.	13.7	79
250	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 15. Catalytic Alkane Dehydrogenation by Iridium(III) Complexes. Journal of the American Chemical Society, 1999, 121, 3992-3999.	13.7	63
251	[4 + 2] Dimerization and Cycloaddition Reactions of α,β-Unsaturated Selenoaldehydes and Selenoketones. Journal of Órganic Chemistry, 1999, 64, 1565-1575.	3.2	35
252	Structural and Bonding Trends in Platinumâ^'Carbon Clusters. Journal of the American Chemical Society, 1999, 121, 7389-7396.	13.7	19

#	Article	IF	CITATIONS
253	Theoretical Characterization of the Reaction Intermediates in a Model of the Nickelâ^'Iron Hydrogenase ofDesulfovibrio gigas. Journal of the American Chemical Society, 1999, 121, 4000-4007.	13.7	191
254	Transition Metal Polyhydride Complexes. 11. Mechanistic Studies of the Cis to Trans Isomerization of the Iridium(III) Dihydride Ir(H)2(CO)L (L = C6H3(CH2P(H)2)2). Organometallics, 1999, 18, 5682-5687.	2.3	26
255	Quantum Catalysis: The Modeling of Catalytic Transition States. ACS Symposium Series, 1999, , 2-17.	0.5	7
256	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 14. β-Hydrogen Transfer and Alkene/Alkyne Insertion at a Cationic Iridium Center. Organometallics, 1998, 17, 5139-5147.	2.3	29
257	Structure and Stability of Palladiumâ^Carbon Cations. Journal of Physical Chemistry A, 1998, 102, 6307-6310.	2.5	17
258	Structure and Stability of Lanthanumâ^'Carbon Cations. Journal of Physical Chemistry A, 1998, 102, 641-645.	2.5	28
259	Inter- and Intramolecular Câ [°] 'H Activation by a Cationic Iridium(III) Center via Oxidative-Addition Reductive-Elimination and I_f -Bond Metathesis Pathways. Journal of the American Chemical Society, 1998, 120, 6169-6170.	13.7	90
260	Transition Metal Polyhydride Complexes. 9. The Effect of Ligand σ- and Ï€-Bonding on the Hâ^'Taâ^'H Bond Angle in Six-Coordinate Tantalum(V) Dihydride Complexes. Organometallics, 1998, 17, 4861-4868.	2.3	14
261	Linear Semibridging Carbonyls. 6. Structure and Bonding in the Dimers of 17-Electron Tantalum Hexacarbonyl and Tetracarbonyl Diphosphine. Organometallics, 1998, 17, 4164-4168.	2.3	16
262	Prediction of the Reactive Intermediates in Alkane Activation by Tris(pyrazolyl borate)rhodium Carbonyl. Journal of Physical Chemistry A, 1998, 102, 1963-1964.	2.5	47
263	Experimental and Theoretical Studies of Nonclassical d0Cyclopentadienyl Polyhydride Complexes of Molybdenum and Tungsten. Organometallics, 1998, 17, 4309-4315.	2.3	31
264	Ab Initio Calculations of the Geometry and Vibrational Frequencies of the Triplet State of Tungsten Pentacarbonyl Amine:Â A Model for the Unification of the Preresonance Raman and the Time-Resolved Infrared Experiments. Journal of the American Chemical Society, 1997, 119, 2885-2888.	13.7	10
265	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 11. Migratory Insertion of Coordinated Nitric Oxide into Cobaltâ^Carbon Bonds. Journal of the American Chemical Society, 1997, 119, 3077-3086.	13.7	32
266	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 12. Intramolecular Carbonâ^'Hydrogen Bond Activation in (Butenyl)manganese Tricarbonyl. Organometallics, 1997, 16, 2318-2324.	2.3	19
267	Generalized Molecular Orbital Theory II. Journal of Physical Chemistry A, 1997, 101, 6936-6944.	2.5	26
268	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 10. Reversal in Stability of Rhodium and Iridium η2-Ethene and Hydridovinyl Complexes. Organometallics, 1997, 16, 1962-1968.	2.3	31
269	Synthesis, Structure, and Hydrideâ^'Deuteride Exchange Studies of CpMoH3(PMe2Ph)2and Theoretical Studies of the CpMoH3(PMe3)2Model System. Organometallics, 1997, 16, 1179-1185.	2.3	21
270	Comparison of Hartreeâ^'Fock, Density Functional, MÃ,llerâ^'Plesset Perturbation, Coupled Cluster, and Configuration Interaction Methods for the Migratory Insertion of Nitric Oxide into a Cobaltâ^'Carbon Bond. Journal of Physical Chemistry A, 1997, 101, 1360-1365.	2.5	46

#	Article	IF	CITATIONS
271	Ab Initio Calculations of the Geometries and Bonding Energies of Alkane and Fluoroalkane Complexes with Tungsten Pentacarbonyl. Journal of Physical Chemistry A, 1997, 101, 4646-4652.	2.5	56
272	Pseudo second-order Jahn-Teller effects and symmetry considerations in transition metal polyhydride complexes. Inorganica Chimica Acta, 1997, 259, 179-184.	2.4	15
273	Extremely localized molecular orbitals (ELMO): a non-orthogonal Hartree-Fock method. Theoretical Chemistry Accounts, 1997, 97, 96-109.	1.4	30
274	Ab Initio and Density Functional Theory Applied to Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes. , 1997, , 255-277.		0
275	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 9. Intermolecular versus Intramolecular Carbonâ^'Hydrogen Bond Activation in Zirconium, Rhodium, and Iridium Complexes. Organometallics, 1996, 15, 1889-1897.	2.3	43
276	Transition Metal Polyhydride Complexes. 8. Pentahydrido(cyclopentadienyl)osmium(VI). Journal of the American Chemical Society, 1996, 118, 8916-8919.	13.7	32
277	Methane Metathesis at a Cationic Iridium Center. Journal of the American Chemical Society, 1996, 118, 6068-6069.	13.7	118
278	Theoretical Studies on Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes. Inorganic Chemistry, 1996, 35, 1273-1278.	4.0	111
279	Basis sets for transition metals: Optimized outerp functions. Journal of Computational Chemistry, 1996, 17, 1359-1370.	3.3	412
280	Small Yttriumâ^'Carbon and Lanthanumâ^'Carbon Clusters:Â Rings Are Most Stable. The Journal of Physical Chemistry, 1996, 100, 18007-18009.	2.9	37
281	Controversial Exothermicity of the Oxidative Addition of Methane to (Cyclopentadienyl)rhodium Carbonyl. The Journal of Physical Chemistry, 1996, 100, 13976-13978.	2.9	31
282	Basis sets for transition metals: Optimized outer p functions. , 1996, 17, 1359.		2
283	Basis sets for transition metals: Optimized outer p functions. Journal of Computational Chemistry, 1996, 17, 1359-1370.	3.3	3
284	Comparison of Moeller-Plesset Perturbation Methods, Complete Active Space Self-Consistent Field Theory, and a New Generalized Molecular Orbital Method for Oxygen Atom Transfer from a Molybdenum Complex to a Phosphine. The Journal of Physical Chemistry, 1995, 99, 16315-16319.	2.9	23
285	Preparation and Thermal Decomposition of N,N'-Diacyl-N,N'-Dialkoxyhydrazines: Synthetic Applications and Mechanistic Insights. Journal of the American Chemical Society, 1995, 117, 4870-4874.	13.7	59
286	Theoretical studies of inorganic and organometallic reaction mechanisms. 8. Hydrogen exchange in the β-agostic ethylene complex of cyclopentadienyl rhodium. Journal of Organometallic Chemistry, 1994, 478, 197-203.	1.8	10
287	Transition metal polyhydride complexes: a theoretical view. Coordination Chemistry Reviews, 1994, 135-136, 845-879.	18.8	91
288	Theoretical Calculations of Metal-Dioxygen Complexes. Chemical Reviews, 1994, 94, 639-658.	47.7	113

#	Article	IF	CITATIONS
289	Transition Metal Polyhydride Complexes. 7. Classical and Nonclassical Structures of [ReH4(CO)(PR3)3]+. Journal of the American Chemical Society, 1994, 116, 4446-4448.	13.7	18
290	Electronic structures of the isolobal pair, Ru3(CO)9(CH)2 and (BH)3(CH)2; the eighteen-electron rule versus skeletal electron-pair counting. Inorganica Chimica Acta, 1993, 213, 75-82.	2.4	4
291	A group theoretical analysis on transition-metal complexes with metal-ligand multiple bonds. Coordination Chemistry Reviews, 1993, 123, 149-167.	18.8	72
292	Geometric distortions in four-legged piano-stool cyclopentadienyl transition-metal complexes. Organometallics, 1993, 12, 19-23.	2.3	36
293	Theoretical studies of inorganic and organometallic reaction mechanisms. 6. Methane activation on transient cyclopentadienylcarbonylrhodium. Organometallics, 1993, 12, 3118-3126.	2.3	76
294	Theoretical studies of inorganic and organometallic reaction mechanisms. 7. Ab initio potential energy surfaces of carbonyl substitutions on six-coordinate trans-W(CO)4(NO)Cl and Re(CO)5Cl. Journal of the American Chemical Society, 1993, 115, 327-336.	13.7	19
295	Nature of metal-metal interactions in systems with bridging ligands. 2. Electronic and molecular structure of the cyclopentadienylnitrosylcobalt dimer and related molecules. Inorganic Chemistry, 1993, 32, 3880-3889.	4.0	19
296	Transition metal polyhydride complexes. 6. CpML6-nHn (n = 4-6) complexes. Organometallics, 1993, 12, 4046-4050.	2.3	22
297	Linear semibridging carbonyls. 4. A consequence of steric crowding and strong metal-to-metal bonding. Journal of the American Chemical Society, 1992, 114, 1641-1645.	13.7	31
298	Theoretical studies of inorganic and organometallic reaction mechanisms. 5. Substitution reactions of 17- and 18-electron transition-metal hexacarbonyl complexes. Inorganic Chemistry, 1992, 31, 2791-2797.	4.0	26
299	Theoretical studies of inorganic and organometallic reaction mechanisms. 3. The origin of the difference in the barrier for the kinetic and thermodynamic products for the oxidative addition of dihydrogen to a square-planar iridium complex. Journal of the American Chemical Society, 1992, 114, 517-522.	13.7	62
300	Transition metal polyhydride complexes. 4. Highly stable nonclassical isomers with octahedral structures. Inorganic Chemistry, 1992, 31, 4262-4265.	4.0	25
301	Transition-metal polyhydride complexes. 3. Relative stabilities of classical and nonclassical isomers. Journal of the American Chemical Society, 1992, 114, 6102-6108.	13.7	40
302	Theoretical studies of inorganic and organometallic reaction mechanisms. 4. Oxidative addition of dihydrogen to d8 square-planar iridium complexes with trans phosphines. Inorganic Chemistry, 1992, 31, 317-321.	4.0	62
303	Electron density analysis of the transition states of substitution reactions of 17- and 18-electron hexacarbonyl complexes. Journal of the American Chemical Society, 1992, 114, 6574-6575.	13.7	21
304	Transition metal polyhydride complexes. 2. Theoretical methods for the determination of stabilities of classical and nonclassical isomers. Journal of the American Chemical Society, 1992, 114, 2928-2932.	13.7	41
305	Transition metal polyhydride complexes. 5. Complexes with a cyclopentadienyl ligand. Organometallics, 1992, 11, 3801-3804.	2.3	18
306	Synthesis and characterization of some new complexes of the Vaska-type trans-[IrX(CO)L2] (Xî—»Cl or I;) Tj ETQ	0 0 0 rgB ⁻ 2.4	[/Overlock 1 3

Inorganica Chimica Acta, 1992, 198-200, 429-435.

#	Article	IF	CITATIONS
307	Theoretical studies of inorganic and organometallic reaction mechanisms. 2. The trans effect in square-planar platinum(II) and rhodium(I) substitution reactions. Inorganic Chemistry, 1991, 30, 646-651.	4.0	100
308	Explanation of the unexpected differences in the ground states of dimethyl- and dichlorobis[1,2-bis(dimethylphosphino)ethane]titanium. Journal of the American Chemical Society, 1991, 113, 2898-2903.	13.7	28
309	Hydride locations and bonding studies in some silyl polyhydride rhenium complexes. Inorganic Chemistry, 1991, 30, 2569-2572.	4.0	33
310	Bond-stretch isomers of transition-metal complexes. Do they exist?. Inorganic Chemistry, 1991, 30, 4433-4437.	4.0	26
311	Nature of metal-metal interactions in systems with bridging ligands. 1. Electronic structure and bonding in octacarbonyldicobalt. Inorganic Chemistry, 1991, 30, 1079-1086.	4.0	68
312	Basis sets for geometry optimizations of second-row transition metal inorganic and organometallic complexes. Journal of Computational Chemistry, 1991, 12, 923-933.	3.3	8
313	Linear semibridging carbonyls—III. Carbonyl and thiocarbonyl ligands as four-electron donors. Polyhedron, 1990, 9, 1799-1808.	2.2	16
314	The Electronic Structure of Metal Dimers and Metal Clusters: The Eighteen-Electron Rule vs. Skeletal Electron-Pair Counting. , 1990, , 265-273.		1
315	Cluster synthesis—XXIII. The synthesis, structure and bonding of Fe4(CO)10(μ-CO)(μ4-S)2. Polyhedron, 1989, 8, 1885-1890.	2.2	36
316	Linear semibridging carbonyls. 2. Heterobimetallic complexes containing a coordinatively unsaturated late transition metal center. Journal of the American Chemical Society, 1989, 111, 1563-1569.	13.7	34
317	Electronic structure of metal dimers. Photoelectron spectra and molecular orbital calculations of dicarbonyl- and dinitrosyl-bridged cobalt, rhodium, and iridium cyclopentadienyl dimers. Organometallics, 1988, 7, 1923-1930.	2.3	9
318	Electronic structure of metal clusters. 6. Photoelectron spectra and molecular orbital calculations of bis(.mu.3-sulfido)- and bis(.mu.3-selenido)nonacarbonyltriosmium. Inorganic Chemistry, 1988, 27, 2250-2255.	4.0	7
319	Interruption of conjugation in transition metal bound polyenes: a reinvestigation of the x-ray crystal structure of (hexamethylbenzene)tricarbonylchromium. Inorganic Chemistry, 1987, 26, 2186-2188.	4.0	21
320	Problems in the theoretical description of metal-metal multiple bonds or how I learned to hate the electron correlation problem. Polyhedron, 1987, 6, 679-684.	2.2	54
321	Geometry optimization of organometallic complexes: A study of basis sets. International Journal of Quantum Chemistry, 1987, 32, 503-512.	2.0	28
322	A study of catalysts derived from supported cobalt carbonyl clusters: Carbon monoxide hydrogenation and XPS analysis. Inorganica Chimica Acta, 1987, 129, 153-161.	2.4	6
323	Quantum mechanical prediction of hydride locations in transition-metal systems. Journal of the American Chemical Society, 1986, 108, 1695-1696.	13.7	8
324	Multiple Metal-Metal and Metal-Carbon Bonds. , 1986, , 391-401.		1

#	Article	IF	CITATIONS
325	Problems in the theoretical structure of organometallic molecules: generalized molecular orbital, configuration interaction calculations on ferrocene. Chemical Physics Letters, 1985, 114, 338-342.	2.6	37
326	Generalized molecular orbital calculations on transition-metal dioxygen complexes: model for manganese porphyrin. Inorganic Chemistry, 1985, 24, 2573-2577.	4.0	16
327	Theoretical studies of bridging-ligand effects in quadruply bonded dichromium(II) compounds. Inorganic Chemistry, 1985, 24, 1542-1546.	4.0	16
328	Generalized molecular orbital calculations on transition-metal dioxygen complexes. Models for iron and cobalt porphyrins. Inorganic Chemistry, 1984, 23, 4627-4632.	4.0	60
329	Photoelectron spectra and molecular orbital calculations on bis(cyclopentadienyldicarbonylchromium, -molybdenum, and -tungsten): nature of the bonding of linear semibridging carbonyls. Journal of the American Chemical Society, 1984, 106, 5079-5083.	13.7	43
330	Characterization of a Fischer-Tropsch catalyst prepared by decarbonylation of dodecacarbonyltetracobalt on alumina. Inorganic Chemistry, 1984, 23, 124-131.	4.0	16
331	Bridging ligand effects in quadruply bonded dichromium(II) compounds. Journal of the American Chemical Society, 1983, 105, 676-677.	13.7	17
332	Interruption of conjugation in polyenes bound to transition-metal fragments. Journal of the American Chemical Society, 1983, 105, 4930-4941.	13.7	53
333	Electronic structure of metal clusters. 2. Photoelectron spectra and molecular orbital calculations on decacarbonyldihydridotriosmium. Inorganic Chemistry, 1982, 21, 3458-3464.	4.0	19
334	Computation and Interpretation of Electron Distributions in Inorganic Molecules. , 1982, , 205-220.		7
335	Electronic structure of metal clusters. 1. Photoelectron spectra and molecular orbital calculations on alkylidynetricobalt nonacarbonyl clusters. Inorganic Chemistry, 1981, 20, 4419-4425.	4.0	36
336	Theoretical study of the structure of tetraborane(10). Chemical Physics Letters, 1981, 84, 194-196.	2.6	8
337	Bond energy and conformation of the molybdenum-to-molybdenum triple bond. Journal of the American Chemical Society, 1980, 102, 2104-2106.	13.7	21
338	Generalized molecular orbital theory. Chemical Physics Letters, 1979, 61, 461-464.	2.6	10
339	Generalized-molecular-orbital theory: Simple multiconfiguration self-consistent-field method. International Journal of Quantum Chemistry, 1978, 14, 613-621.	2.0	8
340	Photoelectron spectral assignments based on ab initio MO calculations for the bicyclic phosphorus compounds P[OCH2]3CMe and P[CH2O]3CMe. Journal of the Chemical Society Chemical Communications, 1978, , 161.	2.0	5
341	Stereochemical activity of s orbitals. Inorganic Chemistry, 1978, 17, 2261-2269.	4.0	27
342	Valence shell electron pair repulsions and the Pauli exclusion principle. Journal of the American Chemical Society, 1978, 100, 6333-6338.	13.7	32

#	Article	IF	CITATIONS
343	Use of spin-orbit coupling in the interpretation of photoelectron spectra. I. Application to substituted rhenium pentacarbonyls. Journal of the American Chemical Society, 1975, 97, 2057-2065.	13.7	60
344	Nonparameterized MO calculations of ligand-bridged M2(CO)8-(U2-X)2-type dimers containing metalî—,metal interactions: Evidence for dictation of stereochemistry by one-electron and two-electron metalî—,metal σ-type bonds. Journal of Organometallic Chemistry, 1974, 70, 413-420.	1.8	62
345	Theoretical study of the geometry of PH3, PF3 and their ground ionic states. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 643.	1.1	26
346	Electrochemical oxidation of organometallic complexes. Carbene and Lewis base complexes of chromium, molybdenum, and tungsten carbonyls. Journal of the Chemical Society Dalton Transactions, 1973, , 1743.	1.1	69
347	ab initio molecular orbital study of the geometry of the interhalogens. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 1829.	1.1	22
348	High energy photoelectron spectroscopy of transition metal complexes. Part 3.—Direct measurement and interpretation of the core level shifts between free and complexed CO, and the bonding in some substituted manganese pentacarbonyls. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 1677-1684.	1.1	37
349	Force constants and the electronic structure of carbonyl groups. d6 Carbonyl halides and dihalides. Inorganic Chemistry, 1972, 11, 1619-1624.	4.0	72
350	Electronic structure and bonding in methyl- and perfluoromethyl(pentacarbonyl)manganese. Inorganic Chemistry, 1972, 11, 768-775.	4.0	531
351	Reactivity of Methyl Diruthenium Complexes with CO and Bipyridine Ligands. Organometallics, 0, , .	2.3	1