
Michael B Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7335319/publications.pdf Version: 2024-02-01

Μιςήλει Β Ηλιι

#	Article	IF	CITATIONS
1	Theoretical Studies on Reactions of Transition-Metal Complexes. Chemical Reviews, 2000, 100, 353-406.	47.7	811
2	Electronic structure and bonding in methyl- and perfluoromethyl(pentacarbonyl)manganese. Inorganic Chemistry, 1972, 11, 768-775.	4.0	531
3	Basis sets for transition metals: Optimized outerp functions. Journal of Computational Chemistry, 1996, 17, 1359-1370.	3.3	412
4	Computational Studies of [NiFe] and [FeFe] Hydrogenases. Chemical Reviews, 2007, 107, 4414-4435.	47.7	383
5	A Capable Bridging Ligand for Fe-Only Hydrogenase:Â Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. Journal of the American Chemical Society, 2001, 123, 3828-3829.	13.7	334
6	Rhodium Boryl Complexes in the Catalytic, Terminal Functionalization of Alkanes. Journal of the American Chemical Society, 2005, 127, 2538-2552.	13.7	317
7	Theoretical Characterization of the Reaction Intermediates in a Model of the Nickelâ^'Iron Hydrogenase of Desulfovibrio gigas. Journal of the American Chemical Society, 1999, 121, 4000-4007.	13.7	191
8	Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site. Coordination Chemistry Reviews, 2003, 238-239, 255-266.	18.8	186
9	Monomeric and Oligomeric Amineâ~'Borane σ-Complexes of Rhodium. Intermediates in the Catalytic Dehydrogenation of Amineâ~'Boranes. Journal of the American Chemical Society, 2009, 131, 15440-15456.	13.7	183
10	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10776-10780.	13.8	179
11	Experimental and Computational Evidence for a Boron-Assisted, Ï <i>f</i> -Bond Metathesis Pathway for Alkane Borylation. Journal of the American Chemical Society, 2003, 125, 858-859. Thermally Stable Homogeneous Catalysts for Alkane Dehydrogenation S.O. thanks the German	13.7	177
12	Academic Exchange Service (DAAD) for financing a research stay with W.C.K. in the USA. This work was supported by the National Science Foundation (CHE 9800184 to M.B.H.), by the University of California Energy Institute and University of California Santa Barbara (to W.C.K.), and by the German Research Association (DFG, to M.W.H). We thank Dr. R. Mynott and Mrs. C. Wirtz, MPI fżr Kohlenforschung, for	13.8	175
13	Modeling the Active Sites in Metalloghzymes. Bt Density Functional Calculations on Models for [Fe]-Hydrogenase: A Structures and Vibrational Frequencies of the Observed Redox Forms and the Reaction Mechanism at the Diiron Active Center. Journal of the American Chemical Society, 2001, 123, 3734-3742.	13.7	169
14	Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Feâ^'H ^{δâ~'} ···H ^{δ+} â^'O, Bond and Methenyl-H ₄ MPT ⁺ Trigger Hydride Transfer. Journal of the American Chemical Society, 2009, 131, 10901-10908.	etb.7	158
15	Electronic Effects Steer the Mechanism of Asymmetric Hydrogenations of Unfunctionalized Aryl-Substituted Alkenes. Journal of the American Chemical Society, 2004, 126, 16688-16689.	13.7	150
16	De Novo Design of Synthetic Di-Iron(I) Complexes as Structural Models of the Reduced Form of Ironâ^'Iron Hydrogenase. Inorganic Chemistry, 2006, 45, 1552-1559.	4.0	145
17	Tetrarhena-heterocycle from the Palladium-Catalyzed Dimerization of Re ₂ (CO) ₈ (μ4-SbPh ₂)(μ4-H) Exhibits an Unusual Host–Guest Behavior. Journal of the American Chemical Society, 2011, 133, 12994-12997.	13.7	144
18	Dual Electron Uptake by Simultaneous Iron and Ligand Reduction in an N-Heterocyclic Carbene Substituted [FeFe] Hydrogenase Model Compound. Inorganic Chemistry, 2005, 44, 5550-5552.	4.0	136

#	Article	IF	CITATIONS
19	Two-State Reactivity in Low-Valent Iron-Mediated C–H Activation and the Implications for Other First-Row Transition Metals. Journal of the American Chemical Society, 2016, 138, 3715-3730.	13.7	136
20	The Catalytic Dehydrogenation of Ammonia-Borane Involving an Unexpected Hydrogen Transfer to Ligated Carbene and Subsequent Carbonâ	13.7	135
21	Mechanism of Water Splitting and Oxygenâ^'Oxygen Bond Formation by a Mononuclear Ruthenium Complex. Journal of the American Chemical Society, 2010, 132, 120-130.	13.7	133
22	Hydrogen-Substituted Osmium Silylene Complexes:Â Effect of Charge Localization on Catalytic Hydrosilation. Journal of the American Chemical Society, 2006, 128, 428-429.	13.7	128
23	Methane Metathesis at a Cationic Iridium Center. Journal of the American Chemical Society, 1996, 118, 6068-6069.	13.7	118
24	Synthesis of Carboxylic Acid-Modified [FeFe]-Hydrogenase Model Complexes Amenable to Surface Immobilization. Organometallics, 2007, 26, 3976-3984.	2.3	115
25	Theoretical Calculations of Metal-Dioxygen Complexes. Chemical Reviews, 1994, 94, 639-658.	47.7	113
26	Theoretical Studies on Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes. Inorganic Chemistry, 1996, 35, 1273-1278.	4.0	111
27	Series of Mixed Valent Fe(II)Fe(I) Complexes That Model the H _{ox} State of [FeFe]Hydrogenase: Redox Properties, Density-Functional Theory Investigation, and Reactivities with Extrinsic CO. Inorganic Chemistry, 2008, 47, 7009-7024.	4.0	111
28	Origins of the Selectivity for Borylation of Primary over Secondary Câ^'H Bonds Catalyzed by Cp*-Rhodium Complexes. Journal of the American Chemical Society, 2010, 132, 3078-3091.	13.7	110
29	Theoretical studies of inorganic and organometallic reaction mechanisms. 2. The trans effect in square-planar platinum(II) and rhodium(I) substitution reactions. Inorganic Chemistry, 1991, 30, 646-651.	4.0	100
30	Carbonâ^'Hydrogen Bond Activation:  Two, Three, or More Mechanisms?. Journal of the American Chemical Society, 2007, 129, 12068-12069.	13.7	100
31	Mechanistic Insights into Iridium-Catalyzed Asymmetric Hydrogenation of Dienes. Chemistry - A European Journal, 2005, 11, 6859-6868.	3.3	95
32	Transition metal polyhydride complexes: a theoretical view. Coordination Chemistry Reviews, 1994, 135-136, 845-879.	18.8	91
33	Inter- and Intramolecular Câ^'H Activation by a Cationic Iridium(III) Center via Oxidative-Addition Reductive-Elimination and Ïf-Bond Metathesis Pathways. Journal of the American Chemical Society, 1998, 120, 6169-6170.	13.7	90
34	Synthesis, Reactivity, and DFT Studies of Tantalum Complexes Incorporating Diamido-N-heterocyclic Carbene Ligands. Facile Endocyclic Câ^'H Bond Activation. Journal of the American Chemical Society, 2006, 128, 12531-12543.	13.7	87
35	Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study. Journal of the American Chemical Society, 2014, 136, 383-395.	13.7	85
36	Density functional study of the catalytic cycle of nickel–iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). Journal of Biological Inorganic Chemistry, 2006, 11, 286-306.	2.6	83

#	Article	IF	CITATIONS
37	The Theoretical Transition State Structure of a Model Complex Bears a Striking Resemblance to the Active Site Structure of DMSO Reductase. Journal of the American Chemical Society, 2001, 123, 5820-5821.	13.7	81
38	Structural and Spectroscopic Features of Mixed Valent Fe ^{II} Fe ^I Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase. Journal of the American Chemical Society, 2012, 134, 13089-13102.	13.7	81
39	Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. Coordination Chemistry Reviews, 2017, 345, 318-341.	18.8	81
40	Prediction of the Geometries of Simple Transition Metal Polyhydride Complexes by Symmetry Analysis. Journal of the American Chemical Society, 1999, 121, 1348-1358.	13.7	79
41	IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. Journal of Biological Inorganic Chemistry, 2002, 7, 318-326.	2.6	78
42	Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H ₂ Production Electrocatalysts. Journal of the American Chemical Society, 2016, 138, 12920-12927.	13.7	78
43	A Theoretical Investigation of Ruthenium-Catalyzed Alkene Hydrosilation:Â Evidence To Support an Exciting New Mechanistic Proposal. Journal of the American Chemical Society, 2004, 126, 13564-13565.	13.7	77
44	Theoretical studies of inorganic and organometallic reaction mechanisms. 6. Methane activation on transient cyclopentadienylcarbonylrhodium. Organometallics, 1993, 12, 3118-3126.	2.3	76
45	The molecular and electronic structure of carbon–hydrogen bond activation and transition metal assisted hydrogen transfer. Coordination Chemistry Reviews, 2009, 253, 1202-1218.	18.8	76
46	Computational Mechanistic Studies on Reactions of Transition Metal Complexes with Noninnocent Pincer Ligands: Aromatization–Dearomatization or Not. ACS Catalysis, 2015, 5, 1895-1913.	11.2	75
47	Assignment of Molecular Structures to the Electrochemical Reduction Products of Diiron Compounds Related to [Feâ^'Fe] Hydrogenase:Â A Combined Experimental and Density Functional Theory Study. Inorganic Chemistry, 2007, 46, 384-394.	4.0	73
48	Mechanism of electrocatalytic hydrogen production by a di-iron model of iron–iron hydrogenase: A density functional theory study of proton dissociation constants and electrode reduction potentials. Dalton Transactions, 2010, 39, 3093.	3.3	73
49	Force constants and the electronic structure of carbonyl groups. d6 Carbonyl halides and dihalides. Inorganic Chemistry, 1972, 11, 1619-1624.	4.0	72
50	A group theoretical analysis on transition-metal complexes with metal-ligand multiple bonds. Coordination Chemistry Reviews, 1993, 123, 149-167.	18.8	72
51	Crystallographic Evidence of a Base-Free Uranium(IV) Terminal Oxo Species. Inorganic Chemistry, 2010, 49, 7620-7622.	4.0	72
52	Electrochemical oxidation of organometallic complexes. Carbene and Lewis base complexes of chromium, molybdenum, and tungsten carbonyls. Journal of the Chemical Society Dalton Transactions, 1973, , 1743.	1.1	69
53	Sulfur Oxygenates of Biomimetics of the Diiron Subsite of the [FeFe]-Hydrogenase Active Site: Properties and Oxygen Damage Repair Possibilities. Journal of the American Chemical Society, 2009, 131, 8296-8307.	13.7	69
54	Analysis of a Pentacoordinate Iron Dicarbonyl as Synthetic Analogue of the Hmd or Monoâ€Iron Hydrogenase Active Site. Chemistry - A European Journal, 2010, 16, 3083-3089.	3.3	69

#	Article	IF	CITATIONS
55	Nature of metal-metal interactions in systems with bridging ligands. 1. Electronic structure and bonding in octacarbonyldicobalt. Inorganic Chemistry, 1991, 30, 1079-1086.	4.0	68
56	Better than platinum? Fuel cells energized by enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16911-16912.	7.1	67
57	A reexamination of the propensities of amino acids towards a particular secondary structure: classification of amino acids based on their chemical structure. Journal of Molecular Modeling, 2008, 14, 769-775.	1.8	67
58	Role of the Chemically Non-Innocent Ligand in the Catalytic Formation of Hydrogen and Carbon Dioxide from Methanol and Water with the Metal as the Spectator. Journal of the American Chemical Society, 2015, 137, 12330-12342.	13.7	67
59	Superloading of Tin Ligands into Rhodium and Iridium Carbonyl Cluster Complexes. Inorganic Chemistry, 2004, 43, 7576-7578.	4.0	66
60	Bimetallic Cluster Complexes:Â The Synthesis, Structures, and Bonding of Ruthenium Carbonyl Cluster Complexes Containing Palladium and Platinum with the Bulky Tri-tert-butyl-phosphine Ligand. Journal of the American Chemical Society, 2004, 126, 5253-5267.	13.7	64
61	Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis?. Journal of the American Chemical Society, 2017, 139, 18065-18070.	13.7	64
62	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 15. Catalytic Alkane Dehydrogenation by Iridium(III) Complexes. Journal of the American Chemical Society, 1999, 121, 3992-3999.	13.7	63
63	A Theoretical Study of the Primary Oxo Transfer Reaction of a Dioxo Molybdenum(VI) Compound with Imine Thiolate Chelating Ligands:Â A Molybdenum Oxotransferase Analogue. Journal of the American Chemical Society, 2001, 123, 3995-4002.	13.7	63
64	Nonparameterized MO calculations of ligand-bridged M2(CO)8-(U2-X)2-type dimers containing metalî—,metal interactions: Evidence for dictation of stereochemistry by one-electron and two-electron metalî—,metal σ-type bonds. Journal of Organometallic Chemistry, 1974, 70, 413-420.	1.8	62
65	Theoretical studies of inorganic and organometallic reaction mechanisms. 3. The origin of the difference in the barrier for the kinetic and thermodynamic products for the oxidative addition of dihydrogen to a square-planar iridium complex. Journal of the American Chemical Society, 1992, 114, 517-522.	13.7	62
66	Theoretical studies of inorganic and organometallic reaction mechanisms. 4. Oxidative addition of dihydrogen to d8 square-planar iridium complexes with trans phosphines. Inorganic Chemistry, 1992, 31, 317-321.	4.0	62
67	The Osmium–Silicon Triple Bond: Synthesis, Characterization, and Reactivity of an Osmium Silylyne Complex. Journal of the American Chemical Society, 2013, 135, 11780-11783.	13.7	62
68	Modeling the Active Sites of Metalloenzymes. 4. Predictions of the Unready States of [NiFe]Desulfovibrio gigasHydrogenase from Density Functional Theory. Inorganic Chemistry, 2001, 40, 18-24.	4.0	61
69	Modeling the Active Sites in Metalloenzymes 5. The Heterolytic Bond Cleavage of H2in the [NiFe] Hydrogenase ofDesulfovibrio gigasby a Nucleophilic Addition Mechanism. Inorganic Chemistry, 2001, 40, 6201-6203.	4.0	61
70	Use of spin-orbit coupling in the interpretation of photoelectron spectra. I. Application to substituted rhenium pentacarbonyls. Journal of the American Chemical Society, 1975, 97, 2057-2065.	13.7	60
71	Generalized molecular orbital calculations on transition-metal dioxygen complexes. Models for iron and cobalt porphyrins. Inorganic Chemistry, 1984, 23, 4627-4632.	4.0	60
72	Density functional study of the complete pathway for the Heck reaction with palladium diphosphines. Journal of Organometallic Chemistry, 2008, 693, 1552-1563.	1.8	60

#	Article	IF	CITATIONS
73	Theoretical Study of Alternative Pathways for the Heck Reaction through Dipalladium and "Ligand-Free―Palladium Intermediates. Organometallics, 2008, 27, 6222-6232.	2.3	60
74	Preparation and Thermal Decomposition of N,N'-Diacyl-N,N'-Dialkoxyhydrazines: Synthetic Applications and Mechanistic Insights. Journal of the American Chemical Society, 1995, 117, 4870-4874.	13.7	59
75	Structures and Energetics of Models for the Active Site of Acetyl-Coenzyme A Synthase:Â Role of Distal and Proximal Metals in Catalysis. Journal of the American Chemical Society, 2004, 126, 3410-3411.	13.7	59
76	Quantum Mechanical Models of the Resting State of the Vanadium-Dependent Haloperoxidase. Inorganic Chemistry, 2004, 43, 4127-4136.	4.0	58
77	Redox active iron nitrosyl units in proton reduction electrocatalysis. Nature Communications, 2014, 5, 3684.	12.8	58
78	Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp2 and sp3 C–H Bond Activations. Journal of Organic Chemistry, 2015, 80, 4672-4682.	3.2	58
79	Ab Initio Calculations of the Geometries and Bonding Energies of Alkane and Fluoroalkane Complexes with Tungsten Pentacarbonyl. Journal of Physical Chemistry A, 1997, 101, 4646-4652.	2.5	56
80	Mechanistic Investigation of the Oxygen-Atom-Transfer Reactivity of Dioxo-molybdenum(VI) Complexes. Chemistry - A European Journal, 2006, 12, 7501-7509.	3.3	56
81	Problems in the theoretical description of metal-metal multiple bonds or how I learned to hate the electron correlation problem. Polyhedron, 1987, 6, 679-684.	2.2	54
82	Interruption of conjugation in polyenes bound to transition-metal fragments. Journal of the American Chemical Society, 1983, 105, 4930-4941.	13.7	53
83	Trigger Mechanism for the Catalytic Hydrogen Activation by Monoiron (Ironâ^'Sulfur Cluster-Free) Hydrogenase. Journal of the American Chemical Society, 2008, 130, 14036-14037.	13.7	52
84	Thermal Decomposition Pathways of Hydroxylamine: Theoretical Investigation on the Initial Steps. Journal of Physical Chemistry A, 2010, 114, 9262-9269.	2.5	52
85	Origins of Selective C(sp ²)–H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoretical–Experimental Study. ACS Catalysis, 2014, 4, 649-656.	11.2	51
86	How Electron Flow Controls the Thermochemistry of the Addition of Olefins to Nickel Dithiolenes:Â Predictions by Density Functional Theory. Journal of the American Chemical Society, 2002, 124, 12076-12077.	13.7	48
87	Computational definition of a mixed valent Fe(II)Fe(I) model of the [FeFe]hydrogenase active site resting state. Journal of Inorganic Biochemistry, 2007, 101, 1752-1757.	3.5	48
88	Prediction of the Reactive Intermediates in Alkane Activation by Tris(pyrazolyl borate)rhodium Carbonyl. Journal of Physical Chemistry A, 1998, 102, 1963-1964.	2.5	47
89	A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chemical Science, 2017, 8, 8291-8300.	7.4	47
90	Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catalysis, 2018, 8, 10658-10667.	11.2	47

#	Article	IF	CITATIONS
91	Comparison of Hartreeâ^'Fock, Density Functional, MÃ,llerâ^'Plesset Perturbation, Coupled Cluster, and Configuration Interaction Methods for the Migratory Insertion of Nitric Oxide into a Cobaltâ^'Carbon Bond. Journal of Physical Chemistry A, 1997, 101, 1360-1365.	2.5	46
92	What Is Special about Aromatic–Aromatic Interactions? Significant Attraction at Large Horizontal Displacement. ACS Central Science, 2020, 6, 420-425.	11.3	44
93	Photoelectron spectra and molecular orbital calculations on bis(cyclopentadienyldicarbonylchromium, -molybdenum, and -tungsten): nature of the bonding of linear semibridging carbonyls. Journal of the American Chemical Society, 1984, 106, 5079-5083.	13.7	43
94	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 9. Intermolecular versus Intramolecular Carbonâ~Hydrogen Bond Activation in Zirconium, Rhodium, and Iridium Complexes. Organometallics, 1996, 15, 1889-1897.	2.3	43
95	High-Spin Ni(II), a Surprisingly Good Structural Model for [NiFe] Hydrogenase. Journal of the American Chemical Society, 2002, 124, 394-395.	13.7	43
96	Reaction of the 1,8-Bis(diphenylmethylium)naphthalenediyl Dication with Fluoride:  Formation of a Cation Containing a Câ^'F→C Bridge. Journal of the American Chemical Society, 2004, 126, 8189-8196.	13.7	43
97	Understanding the factors affecting the activation of alkane by Cp [′] Rh(CO) ₂ (Cp [′] Â=ÂCp or Cp*). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20178-20183.	7.1	43
98	Determination of copper binding sites in peptides containing basic residues: a combined experimental and theoretical study. International Journal of Mass Spectrometry, 2001, 204, 31-46.	1.5	42
99	Role of aromatic amino acids in amyloid self-assembly. International Journal of Biological Macromolecules, 2020, 156, 949-959.	7.5	42
100	Transition metal polyhydride complexes. 2. Theoretical methods for the determination of stabilities of classical and nonclassical isomers. Journal of the American Chemical Society, 1992, 114, 2928-2932.	13.7	41
101	Rhodium Silyl Boryl Hydride Complexes: Comparison of Bonding and the Rates of Elimination of Borane, Silane, and Dihydrogen. Angewandte Chemie - International Edition, 2004, 43, 5474-5477.	13.8	41
102	The Mechanism of Alkene Addition to a Nickel Bis(dithiolene) Complex: The Role of the Reduced Metal Complex. Journal of the American Chemical Society, 2012, 134, 4481-4484.	13.7	41
103	Transition-metal polyhydride complexes. 3. Relative stabilities of classical and nonclassical isomers. Journal of the American Chemical Society, 1992, 114, 6102-6108.	13.7	40
104	Photoreversible Multiple Additions of Hydrogen to a Highly Unsaturated Platinumâ^'Rhenium Cluster Complex. Journal of the American Chemical Society, 2007, 129, 986-1000.	13.7	40
105	Refining the Active Site Structure of Ironâ^'Iron Hydrogenase Using Computational Infrared Spectroscopy. Inorganic Chemistry, 2008, 47, 2380-2388.	4.0	40
106	Self-Assembly of Dinitrosyl Iron Units into Imidazolate-Edge-Bridged Molecular Squares: Characterization Including M¶ssbauer Spectroscopy. Journal of the American Chemical Society, 2011, 133, 20426-20434.	13.7	40
107	Interplay of hemilability and redox activity in models of hydrogenase active sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9775-E9782.	7.1	40
108	Density functional theory on the larger active site models for [NiFe] hydrogenases: Two-state reactivity?. Comptes Rendus Chimie, 2008, 11, 790-804.	0.5	39

#	Article	IF	CITATIONS
109	Ambidentate Thiocyanate and Cyanate Ligands in Dinitrosyl Iron Complexes. Inorganic Chemistry, 2013, 52, 2119-2124.	4.0	39
110	Cobalt Pincer Complexes in Catalytic C–H Borylation: The Pincer Ligand Flips Rather Than Dearomatizes. ACS Catalysis, 2018, 8, 10606-10618.	11.2	39
111	Transition Metal Polyhydride Complexes. 10. Intramolecular Hydrogen Exchange in the Octahedral Iridium(III) Dihydrogen Dihydride Complexes IrXH2(η2-H2)(PR3)2(X = Cl, Br, I). Journal of the American Chemical Society, 2000, 122, 2903-2910.	13.7	38
112	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 18. Catalytic Transfer Dehydrogenation of Alkanes by an Iridium(III) Pincer Complex. Organometallics, 2001, 20, 2153-2160.	2.3	38
113	Intramolecular Iron-Mediated C–H Bond Heterolysis with an Assist of Pendant Base in a [FeFe]-Hydrogenase Model. Journal of the American Chemical Society, 2014, 136, 16817-16823.	13.7	38
114	Structure and Magnetization Dynamics of Dyâ^'Fe and Dyâ^'Ru Bonded Complexes. Angewandte Chemie - International Edition, 2018, 57, 8144-8148.	13.8	38
115	High energy photoelectron spectroscopy of transition metal complexes. Part 3.—Direct measurement and interpretation of the core level shifts between free and complexed CO, and the bonding in some substituted manganese pentacarbonyls. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 1677-1684.	1.1	37
116	Problems in the theoretical structure of organometallic molecules: generalized molecular orbital, configuration interaction calculations on ferrocene. Chemical Physics Letters, 1985, 114, 338-342.	2.6	37
117	Small Yttriumâ^'Carbon and Lanthanumâ^'Carbon Clusters:Â Rings Are Most Stable. The Journal of Physical Chemistry, 1996, 100, 18007-18009.	2.9	37
118	Synthesis, Characterization, and Electronic Structures of a Series of Two-Dimensional Trimetallic Cluster Complexes, Ru ₃ (CO) ₉ (μ-SnPh ₂) ₃ [Pt(PBu <i>^t</i> _{3< <i>x</i>= 0â^3. Journal of the American Chemical Society, 2007, 129, 12328-12340.}	/sub>)] <i< td=""><td>><³⁷sub>x</td></i<>	>< ³⁷ sub>x
119	Modeling Structures and Vibrational Frequencies for Dinitrosyl Iron Complexes (DNICs) with Density Functional Theory. Inorganic Chemistry, 2011, 50, 8532-8540.	4.0	37
120	Density Functional Calculations on Protonation of the [FeFe]â€Hydrogenase Model Complex Fe ₂ (μâ€pdt)(CO) ₄ (PMe ₃) ₂ and Subsequent Isomerization Pathways. European Journal of Inorganic Chemistry, 2011, 2011, 1080-1093.	2.0	37
121	Computational Studies on Ethylene Addition to Nickel Bis(dithiolene). Journal of Physical Chemistry A, 2012, 116, 476-482.	2.5	37
122	Sulfur Reduction Catalyst Design Inspired by Elemental Periodic Expansion Concept for Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 6414-6425.	14.6	37
123	Electronic structure of metal clusters. 1. Photoelectron spectra and molecular orbital calculations on alkylidynetricobalt nonacarbonyl clusters. Inorganic Chemistry, 1981, 20, 4419-4425.	4.0	36
124	Cluster synthesis—XXIII. The synthesis, structure and bonding of Fe4(CO)10(μ-CO)(μ4-S)2. Polyhedron, 1989, 8, 1885-1890.	2.2	36
125	Geometric distortions in four-legged piano-stool cyclopentadienyl transition-metal complexes. Organometallics, 1993, 12, 19-23.	2.3	36
126	Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: Models of the iron–iron hydrogenase enzyme active site. Journal of Computational Chemistry, 2006, 27, 1454-1462.	3.3	36

#	Article	IF	CITATIONS
127	[4 + 2] Dimerization and Cycloaddition Reactions of $\hat{1}\pm,\hat{1}^2$ -Unsaturated Selenoaldehydes and Selenoketones. Journal of Organic Chemistry, 1999, 64, 1565-1575.	3.2	35
128	Density functional theory study of the mechanism for Ni(NHC)2 catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage. Journal of Organometallic Chemistry, 2009, 694, 2831-2838.	1.8	35
129	Ortho-ivietalation Dynamics and Ligand Fluxionality in the Conversion of Os ₃ (CO) ₁₀ (dppm) to HOs ₃ (CO) ₈ [1/4-PhP(C ₆ H ₄ -Î1/4 ₂ ,Î ^{1Experimental and DFT Evidence for the Participation of Agostic Câ[^]H and i€-Aryl Intermediates at an})@L la ksub:	>28年aub>PPh
130	Linear semibridging carbonyls. 2. Heterobimetallic complexes containing a coordinatively unsaturated late transition metal center. Journal of the American Chemical Society, 1989, 111, 1563-1569.	13.7	34
131	High Nuclearity Iridiumâ^'Platinum Clusters:Â Synthesis, Structures, Bonding, and Reactivity. Journal of the American Chemical Society, 2005, 127, 1007-1014.	13.7	34
132	Density Functional Theory Investigation into the Mechanism for η2-Alkyne to Vinylidene Isomerization by the Addition of Phenylacetylene to [(η3-C3H5)Rh(PiPr3)2]. Organometallics, 2008, 27, 4325-4333.	2.3	34
133	Invoking Side-Chain Functionality for the Mediation of Regioselectivity during Ring-Opening Polymerization of Glucose Carbonates. Journal of the American Chemical Society, 2020, 142, 16974-16981.	13.7	34
134	Hydride locations and bonding studies in some silyl polyhydride rhenium complexes. Inorganic Chemistry, 1991, 30, 2569-2572.	4.0	33
135	On the Behavior of α,β-Unsaturated Thioaldehydes and Thioketones in the Dielsâ^'Alder Reaction. Journal of Organic Chemistry, 2000, 65, 6601-6612.	3.2	33
136	Electronic and Steric Effects on Molecular Dihydrogen Activation in [Cp*OsH4(L)]+(L = PPh3, AsPh3,) Tj ETQq0 C	0 rgBT /O 13.7	verlock 10 Th
137	Valence shell electron pair repulsions and the Pauli exclusion principle. Journal of the American Chemical Society, 1978, 100, 6333-6338.	13.7	32
138	Transition Metal Polyhydride Complexes. 8. Pentahydrido(cyclopentadienyl)osmium(VI). Journal of the American Chemical Society, 1996, 118, 8916-8919.	13.7	32
139	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 11. Migratory Insertion of Coordinated Nitric Oxide into Cobaltâ"Carbon Bonds. Journal of the American Chemical Society, 1997, 119, 3077-3086.	13.7	32
140	Recent theoretical predictions of the active site for the observed forms in the catalytic cycle of Ni-Fe hydrogenase. Journal of Biological Inorganic Chemistry, 2001, 6, 467-473.	2.6	32
141	Nickelâ^'Manganese Sulfido Carbonyl Cluster Complexes. Synthesis, Structure, and Properties of the Unusual Paramagnetic Complexes Cp2Ni2Mn(CO)3(μ3-E)2, E = S, Se. Inorganic Chemistry, 2004, 43, 2515-2525.	4.0	32
142	Carbon–Hydrogen Activation of Cycloalkanes by Cyclopentadienylcarbonylrhodium—A Lifetime Enigma. Journal of the American Chemical Society, 2014, 136, 8614-8625.	13.7	32
143	Towards understanding of lanthanide–transition metal bonding: investigations of the first Ce–Fe bonded complex. Chemical Communications, 2018, 54, 10893-10896.	4.1	32
144	Linear semibridging carbonyls. 4. A consequence of steric crowding and strong metal-to-metal bonding. Journal of the American Chemical Society, 1992, 114, 1641-1645.	13.7	31

#	Article	IF	CITATIONS
145	Controversial Exothermicity of the Oxidative Addition of Methane to (Cyclopentadienyl)rhodium Carbonyl. The Journal of Physical Chemistry, 1996, 100, 13976-13978.	2.9	31
146	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 10. Reversal in Stability of Rhodium and Iridium η2-Ethene and Hydridovinyl Complexes. Organometallics, 1997, 16, 1962-1968.	2.3	31
147	Experimental and Theoretical Studies of Nonclassical d0Cyclopentadienyl Polyhydride Complexes of Molybdenum and Tungsten. Organometallics, 1998, 17, 4309-4315.	2.3	31
148	Benzene chromium tricarbonyl revisited: Theoretical study of the structure and dynamics of (?6-C6H6)Cr(CO)3. International Journal of Quantum Chemistry, 2000, 77, 152-160.	2.0	31
149	Extremely localized molecular orbitals (ELMO): a non-orthogonal Hartree-Fock method. Theoretical Chemistry Accounts, 1997, 97, 96-109.	1.4	30
150	Dinuclear Ruthenium and Iron Complexes Containing Palladium and Platinum with Tri-tert-Butylphosphine Ligands:Â Synthesis, Structures, and Bonding. Inorganic Chemistry, 2004, 43, 3921-3929.	4.0	30
151	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 14. β-Hydrogen Transfer and Alkene/Alkyne Insertion at a Cationic Iridium Center. Organometallics, 1998, 17, 5139-5147.	2.3	29
152	Probing the Mechanism of Carbonâ^'Hydrogen Bond Activation by Photochemically Generated Hydridotris(pyrazolyl)borato Carbonyl Rhodium Complexes: New Experimental and Theoretical Investigations. Organometallics, 2008, 27, 189-201.	2.3	29
153	Potential Hydrogen Bottleneck in Nickelâ^'Iron Hydrogenase. Inorganic Chemistry, 2010, 49, 6378-6380.	4.0	29
154	Geometry optimization of organometallic complexes: A study of basis sets. International Journal of Quantum Chemistry, 1987, 32, 503-512.	2.0	28
155	Explanation of the unexpected differences in the ground states of dimethyl- and dichlorobis[1,2-bis(dimethylphosphino)ethane]titanium. Journal of the American Chemical Society, 1991, 113, 2898-2903.	13.7	28
156	Structure and Stability of Lanthanumâ^'Carbon Cations. Journal of Physical Chemistry A, 1998, 102, 641-645.	2.5	28
157	De Novo design in organometallic chemistry: stabilizing iridium(V). Coordination Chemistry Reviews, 2003, 238-239, 315-331.	18.8	28
158	Unsaturated Platinumâ^'Rhenium Cluster Complexes. Synthesis, Structures and Reactivity. Journal of the American Chemical Society, 2007, 129, 5981-5991.	13.7	28
159	Apparent Anti-Woodward–Hoffmann Addition to a Nickel Bis(dithiolene) Complex: The Reaction Mechanism Involves Reduced, Dimetallic Intermediates. Inorganic Chemistry, 2013, 52, 3711-3723.	4.0	28
160	Stereochemical activity of s orbitals. Inorganic Chemistry, 1978, 17, 2261-2269.	4.0	27
161	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 20. Carbonâ^'Hydrogen and Carbonâ^'Carbon Bond Activation of Cyclopropane by Cationic Iridium(III) and Neutral Rhodium(I) and Iridium(I) Complexes. Organometallics, 2001, 20, 5606-5613.	2.3	27
162	Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society, 2018, 140, 1842-1854.	13.7	27

#	Article	IF	CITATIONS
163	Theoretical study of the geometry of PH3, PF3 and their ground ionic states. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 643.	1.1	26
164	Bond-stretch isomers of transition-metal complexes. Do they exist?. Inorganic Chemistry, 1991, 30, 4433-4437.	4.0	26
165	Theoretical studies of inorganic and organometallic reaction mechanisms. 5. Substitution reactions of 17- and 18-electron transition-metal hexacarbonyl complexes. Inorganic Chemistry, 1992, 31, 2791-2797.	4.0	26
166	Generalized Molecular Orbital Theory II. Journal of Physical Chemistry A, 1997, 101, 6936-6944.	2.5	26
167	Transition Metal Polyhydride Complexes. 11. Mechanistic Studies of the Cis to Trans Isomerization of the Iridium(III) Dihydride Ir(H)2(CO)L (L = C6H3(CH2P(H)2)2). Organometallics, 1999, 18, 5682-5687.	2.3	26
168	Regioselective 12CO/13CO exchange activity of a mixed-valent Fe(ii)Fe(i) model of the Hox state of [FeFe]-hydrogenase. Chemical Communications, 2008, , 1563.	4.1	26
169	Transition metal polyhydride complexes. 4. Highly stable nonclassical isomers with octahedral structures. Inorganic Chemistry, 1992, 31, 4262-4265.	4.0	25
170	Computational Insights into Uranium Complexes Supported by Redox-Active α-Diimine Ligands. Inorganic Chemistry, 2012, 51, 2058-2064.	4.0	25
171	Carbon Monoxide Induced Reductive Elimination of Disulfide in an N-Heterocyclic Carbene (NHC)/ Thiolate Dinitrosyl Iron Complex (DNIC). Journal of the American Chemical Society, 2013, 135, 8423-8430.	13.7	25
172	Nickel Fluorocarbene Metathesis with Fluoroalkenes. Angewandte Chemie - International Edition, 2018, 57, 5772-5776.	13.8	25
173	Do B3LYP and CCSD(T) Predict Different Hydrosilylation Mechanisms? Influences of Theoretical Methods and Basis Sets on Relative Energies in Rutheniumâ^'Silylene-Catalyzed Ethylene Hydrosilylation. Journal of Physical Chemistry A, 2006, 110, 1416-1425.	2.5	24
174	Comparison of Moeller-Plesset Perturbation Methods, Complete Active Space Self-Consistent Field Theory, and a New Generalized Molecular Orbital Method for Oxygen Atom Transfer from a Molybdenum Complex to a Phosphine. The Journal of Physical Chemistry, 1995, 99, 16315-16319.	2.9	23
175	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 17. Unprecedented Câ~'C Bond Activation at Rhodium(I) and Iridium(I). Organometallics, 2000, 19, 3338-3346.	2.3	23
176	Comparative Insight into Electronic Properties and Reactivities toward C–H Bond Activation by Iron(IV)–Nitrido, Iron(IV)–Oxo, and Iron(IV)–Sulfido Complexes: A Theoretical Investigation. Inorganic Chemistry, 2013, 52, 2684-2696.	4.0	23
177	ab initio molecular orbital study of the geometry of the interhalogens. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 1829.	1.1	22
178	Transition metal polyhydride complexes. 6. CpML6-nHn (n = 4-6) complexes. Organometallics, 1993, 12, 4046-4050.	2.3	22
179	Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory. Journal of Biological Inorganic Chemistry, 2007, 12, 751-760.	2.6	22
180	A New Mechanism for the Conversion of Transition Metal Azides to Imido Complexes. Journal of the American Chemical Society, 2008, 130, 16452-16453.	13.7	22

#	Article	IF	CITATIONS
181	Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catalysis, 2020, 10, 3778-3789.	11.2	22
182	Bond energy and conformation of the molybdenum-to-molybdenum triple bond. Journal of the American Chemical Society, 1980, 102, 2104-2106.	13.7	21
183	Interruption of conjugation in transition metal bound polyenes: a reinvestigation of the x-ray crystal structure of (hexamethylbenzene)tricarbonylchromium. Inorganic Chemistry, 1987, 26, 2186-2188.	4.0	21
184	Electron density analysis of the transition states of substitution reactions of 17- and 18-electron hexacarbonyl complexes. Journal of the American Chemical Society, 1992, 114, 6574-6575.	13.7	21
185	Synthesis, Structure, and Hydrideâ^'Deuteride Exchange Studies of CpMoH3(PMe2Ph)2and Theoretical Studies of the CpMoH3(PMe3)2Model System. Organometallics, 1997, 16, 1179-1185.	2.3	21
186	Factors affecting the structure of substituted tris(pyrazolyl)borate rhodium dicarbonyl complexes. Inorganica Chimica Acta, 2002, 330, 268-282.	2.4	21
187	The Competition between Allene and Butadiene in the Carbonâ^'Hydrogen Bond Activation Initiated by a Tungsten Allyl Complex:Â A DFT Study. Organometallics, 2005, 24, 3827-3835.	2.3	21
188	Carbon–hydrogen vs. carbon–halogen oxidative addition of chlorobenzene by a neutral iridium complex explored by DFT. Dalton Transactions, 2009, , 5933.	3.3	21
189	Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites. Chemical Science, 2019, 10, 1368-1373.	7.4	21
190	Minimum Energy Structure of Hydridotris(pyrazolyl)borato Iridium(V) Tetrahydride Is Not aC3vCapped Octahedron. Journal of the American Chemical Society, 2001, 123, 9822-9829.	13.7	20
191	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 19. Substitution Reaction in Cyclopentadienyl Metal Dicarbonyls. Organometallics, 2001, 20, 5724-5730.	2.3	20
192	Density Functional Study of the Thermodynamics of Hydrogen Production by Tetrairon Hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a Hydrogenase Model. Inorganic Chemistry, 2010, 49, 5737-5747.	4.0	20
193	Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase. Chemical Science, 2016, 7, 3710-3719.	7.4	20
194	Electronic structure of metal clusters. 2. Photoelectron spectra and molecular orbital calculations on decacarbonyldihydridotriosmium. Inorganic Chemistry, 1982, 21, 3458-3464.	4.0	19
195	Theoretical studies of inorganic and organometallic reaction mechanisms. 7. Ab initio potential energy surfaces of carbonyl substitutions on six-coordinate trans-W(CO)4(NO)Cl and Re(CO)5Cl. Journal of the American Chemical Society, 1993, 115, 327-336.	13.7	19
196	Nature of metal-metal interactions in systems with bridging ligands. 2. Electronic and molecular structure of the cyclopentadienylnitrosylcobalt dimer and related molecules. Inorganic Chemistry, 1993, 32, 3880-3889.	4.0	19
197	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 12. Intramolecular Carbonâ^'Hydrogen Bond Activation in (Butenyl)manganese Tricarbonyl. Organometallics, 1997, 16, 2318-2324.	2.3	19
198	Structural and Bonding Trends in Platinumâ^'Carbon Clusters. Journal of the American Chemical Society, 1999, 121, 7389-7396.	13.7	19

#	Article	IF	CITATIONS
199	Computational Investigation of the Concerted Dismutation of Chlorite Ion by Water-Soluble Iron Porphyrins. Inorganic Chemistry, 2011, 50, 7928-7930.	4.0	19
200	Carbon–Bromine Bond Formation through a Nickel-Centered Spin-Crossing Mechanism. Organometallics, 2011, 30, 6365-6371.	2.3	19
201	The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(iv)–oxo complexes. Physical Chemistry Chemical Physics, 2012, 14, 12863.	2.8	19
202	Origin of Shielding and Deshielding Effects in NMR Spectra of Organic Conjugated Polyynes. Organic Letters, 2019, 21, 753-757.	4.6	19
203	Computational Investigations of Enantioselection in Carbon–Carbon Bond Forming Reactions of Ruthenium Guanidinobenzimidazole Second Coordination Sphere Hydrogen Bond Donor Catalysts. Organometallics, 2020, 39, 1149-1162.	2.3	19
204	Transition metal polyhydride complexes. 5. Complexes with a cyclopentadienyl ligand. Organometallics, 1992, 11, 3801-3804.	2.3	18
205	Transition Metal Polyhydride Complexes. 7. Classical and Nonclassical Structures of [ReH4(CO)(PR3)3]+. Journal of the American Chemical Society, 1994, 116, 4446-4448.	13.7	18
206	Reaction Products of W(CO)6with Formamidines; Electronic Structure of a W2(μ-CO)2Core with Unsymmetric Bridging Carbonyls. Inorganic Chemistry, 2004, 43, 6954-6964.	4.0	18
207	Combined experimental and theoretical investigation into C–H activation of cyclic alkanes by Cp′Rh(CO)2 (Cp′ = η5-C5H5 or η5-C5Me5). Dalton Transactions, 2011, 40, 1751.	3.3	18
208	Computational Exploration of Alternative Catalysts for Olefin Purification: Cobalt and Copper Analogues Inspired by Nickel Bis(dithiolene) Electrocatalysis. Inorganic Chemistry, 2014, 53, 9679-9691.	4.0	18
209	Bridging ligand effects in quadruply bonded dichromium(II) compounds. Journal of the American Chemical Society, 1983, 105, 676-677.	13.7	17
210	Structure and Stability of Palladiumâ^'Carbon Cations. Journal of Physical Chemistry A, 1998, 102, 6307-6310.	2.5	17
211	Urea decomposition facilitated by a urease model complex: a theoretical investigation. Dalton Transactions, 2005, , 3542.	3.3	17
212	The Activation of Dihydrogen. , 2006, , 121-158.		17
213	Activation of Hydrogen and Related Small Molecules by the Unsaturated Cluster Complex PtOs ₃ (CO) ₇ (PBu ^t ₃)(μ-PBu ^t ₂)(μ Organometallics, 2008, 27, 4938-4947.	4œ8b>4<	/sub>-CHCN
214	cis-Dithiolatonickel as metalloligand to dinitrosyl iron units: the di-metallic structure of Ni(μ-SR)[Fe(NO)2] and an unexpected, abbreviated metalloadamantyl cluster, Ni2(μ-SR)4[Fe(NO)2]3. Dalton Transactions, 2011, 40, 6047.	3.3	17
215	Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions. Journal of Chemical Physics, 2013, 138, 214301.	3.0	17
216	Efficient Redox-Neutral Photocatalytic Formate to Carbon Monoxide Conversion Enabled by Long-Range Hot Electron Transfer from Mn-Doped Quantum Dots. Journal of the American Chemical Society, 2021, 143, 10292-10300.	13.7	17

#	Article	IF	CITATIONS
217	Characterization of a Fischer-Tropsch catalyst prepared by decarbonylation of dodecacarbonyltetracobalt on alumina. Inorganic Chemistry, 1984, 23, 124-131.	4.0	16
218	Generalized molecular orbital calculations on transition-metal dioxygen complexes: model for manganese porphyrin. Inorganic Chemistry, 1985, 24, 2573-2577.	4.0	16
219	Theoretical studies of bridging-ligand effects in quadruply bonded dichromium(II) compounds. Inorganic Chemistry, 1985, 24, 1542-1546.	4.0	16
220	Linear semibridging carbonyls—III. Carbonyl and thiocarbonyl ligands as four-electron donors. Polyhedron, 1990, 9, 1799-1808.	2.2	16
221	Linear Semibridging Carbonyls. 6. Structure and Bonding in the Dimers of 17-Electron Tantalum Hexacarbonyl and Tetracarbonyl Diphosphine. Organometallics, 1998, 17, 4164-4168.	2.3	16
222	An Apparent Violation of Microscopic Reversibility:Â Mechanisms for Ligand Substitution Reactions of Oxorhenium(V) Dithiolate Complexes. Journal of the American Chemical Society, 2007, 129, 1560-1567.	13.7	16
223	Observation of Inductive Effects That Cause a Change in the Rate-Determining Step for the Conversion of Rhenium Azides to Imido Complexes. Inorganic Chemistry, 2011, 50, 10505-10514.	4.0	16
224	Stacking Interactions of Ni(acac) Chelates with Benzene: Calculated Interaction Energies. ChemPhysChem, 2013, 14, 1797-1800.	2.1	16
225	Uptake of One and Two Molecules of 1,3-Butadiene by Platinum Bis(dithiolene): A Theoretical Study. Inorganic Chemistry, 2014, 53, 9692-9702.	4.0	16
226	Pseudo second-order Jahn-Teller effects and symmetry considerations in transition metal polyhydride complexes. Inorganica Chimica Acta, 1997, 259, 179-184.	2.4	15
227	Theoretical Study of the Thermal Decomposition ofN,N'-Diacyl-N,N'-Dialkoxyhydrazines: A Comparison of HF, MP2, and DFT. Journal of Physical Chemistry A, 2000, 104, 6247-6252.	2.5	15
228	Density functional studies of catalytic alkane dehydrogenation by an iridium pincer complex with and without a hydrogen acceptor. Journal of Molecular Catalysis A, 2002, 189, 111-118.	4.8	15
229	Transformations and Reactions of Re2(CO)8(μ-SbPh2)(μ-H) Induced by the Addition of a Platinum(tri-t-butylphosphine) Group. Inorganic Chemistry, 2009, 48, 652-662.	4.0	15
230	Density Functional Theory Applied to a Difference in Pathways Taken by the Enzymes Cytochrome P450 and Superoxide Reductase: Spin States of Ferric Hydroperoxo Intermediates and Hydrogen Bonds from Water. Inorganic Chemistry, 2010, 49, 188-198.	4.0	15
231	Understanding Pd–Pd Bond Length Variation in (PNP)Pd–Pd(PNP) Dimers. Inorganic Chemistry, 2013, 52, 2317-2322.	4.0	15
232	Analysis of an alternative to the H-atom abstraction mechanism in methane C–H bond activation by nonheme iron(iv)-oxo oxidants. Dalton Transactions, 2013, 42, 10260.	3.3	15
233	Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data. Crystal Growth and Design, 2017, 17, 6353-6362.	3.0	15
234	Controlling O ₂ Reactivity in Synthetic Analogues of [NiFeS]- and [NiFeSe]-Hydrogenase Active Sites. Journal of the American Chemical Society, 2019, 141, 15338-15347.	13.7	15

#	Article	IF	CITATIONS
235	Transition Metal Polyhydride Complexes. 9. The Effect of Ligand σ- and Ï€-Bonding on the Hâ^'Taâ^'H Bond Angle in Six-Coordinate Tantalum(V) Dihydride Complexes. Organometallics, 1998, 17, 4861-4868.	2.3	14
236	Carbonâ^'Hydrogen Bond Activation in Hydridotris(pyrazolyl)borate Platinum(IV) Complexes: Comparison of Density Functionals, Basis Sets, and Bonding Patterns. Journal of Chemical Theory and Computation, 2007, 3, 2268-2281.	5.3	14
237	α-Cleavage of Phenyl Groups from GePh ₃ Ligands in Iridium Carbonyl Cluster Complexes. A Mechanism and Its Role in the Synthesis of Bridging Germylene Ligands. Organometallics, 2012, 31, 2621-2630.	2.3	14
238	Diruthenium Naphthalene and Anthracene Complexes Containing a Doubly Linked Dicyclopentadienyl Ligand. Organometallics, 2012, 31, 4838-4848.	2.3	14
239	Density Functional Calculations on the Conversion of Azide and Carbon Monoxide to Isocyanate and Dinitrogen by a Nickel to Sulfur Rebound Mechanism. Chemistry - A European Journal, 2004, 10, 1805-1814.	3.3	13
240	Forty years of Fenske-Hall molecular orbital theory. , 2005, , 1143-1165.		13
241	The reaction of electrophiles with models of iron–iron hydrogenase: A switch in regioselectivity. Computational and Theoretical Chemistry, 2006, 771, 123-128.	1.5	13
242	Kinetic Câ^'H Oxidative Addition vs Thermodynamic Câ^'X Oxidative Addition of Chlorobenzene by a Neutral Rh(I) System. A Density Functional Theory Study. Journal of Physical Chemistry A, 2009, 113, 11706-11712.	2.5	13
243	Understanding the Radical Nature of an Oxidized Ruthenium Tris(thiolate) Complex and Its Role in the Chemistry. Journal of the American Chemical Society, 2015, 137, 15616-15619.	13.7	13
244	Influence of the Density Functional and Basis Set on the Relative Stabilities of Oxygenated Isomers of Diiron Models for the Active Site of [FeFe]-Hydrogenase. Journal of Chemical Theory and Computation, 2015, 11, 205-214.	5.3	13
245	Structural and Electronic Responses to the Three Redox Levels of Fe(NO)N ₂ S ₂ â€Fe(NO) ₂ . Chemistry - A European Journal, 2018, 24, 16003-16008.	3.3	13
246	Triisopropylsilyl (TIPS) Alkynes as Building Blocks for Syntheses of Platinum Triisopropylsilylpolyynyl and Diplatinum Polyynediyl Complexes. Organometallics, 2019, 38, 3294-3310.	2.3	13
247	Astatine partitioning between nitric acid and conventional solvents: indication of covalency in ketone complexation of AtO ⁺ . Chemical Communications, 2020, 56, 9004-9007.	4.1	13
248	Unsupported Lanthanide–Transition Metal Bonds: Ionic vs Polar Covalent?. Inorganic Chemistry, 2021, 60, 9394-9401.	4.0	13
249	Linkage Isomerization Reactions of M(CO)2L Complexes (M = (η5-C5H5)Mn, (η5-C5H5)Re, or (η6-C6H6)Cr; L =) Tj ETQq1 (1 0,784314 r 12
250	A mechanism for the addition of ethylene to nickel bisâ€dithiolene. International Journal of Quantum Chemistry, 2013, 113, 1621-1625.	2.0	12
251	Regioselectivity in Ligand Substitution Reactions on Diiron Complexes Governed by Nucleophilic and Electrophilic Ligand Properties. Inorganic Chemistry, 2015, 54, 3523-3535.	4.0	12
252	The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes. Inorganic Chemistry, 2017, 56, 583-593.	4.0	12

#	Article	IF	CITATIONS
253	Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal, 2017, 23, 11046-11053.	3.3	12
254	Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbon–Carbon Bond Formation with Palladium Complexes: A Computational Mechanistic Study. Journal of the American Chemical Society, 2018, 140, 3929-3939.	13.7	12
255	Mössbauer Spectroscopy and Theoretical Studies of Iron Bimetallic Complexes Showing Electrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2019, 58, 7069-7077.	4.0	12
256	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 16. Oxidative Promotion of the Migratory Insertion of Carbon Monoxide in Cyclopentadienylmethyldicarbonyliron (II). Journal of Physical Chemistry A, 2000, 104, 7324-7332.	2.5	11
257	Carbon–hydrogen bond activation in cyclopentadienyl dimethyl tungsten nitrosyl and carbonylBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany.ÂTheoretical studies of inorganic and organometallic reaction mechanisms. Part 21.1. Dalton Transactions RSC. 2002 713-718.	2.3	11
258	Oxygen atom transfer catalysis: Ligand effects on the key reaction barrier in molybdenum (VI) dioxo systemsâ~†. Journal of Molecular Catalysis A, 2010, 324, 15-23.	4.8	11
259	Comparisons of MN ₂ S ₂ vs. bipyridine as redox-active ligands to manganese and rhenium in (L–L)M′(CO) ₃ Cl complexes. Dalton Transactions, 2017, 46, 5175-5182.	3.3	11
260	Nickel Fluorocarbene Metathesis with Fluoroalkenes. Angewandte Chemie, 2018, 130, 5874-5878.	2.0	11
261	Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets. CrystEngComm, 2018, 20, 4506-4514.	2.6	11
262	A computational study of hydrogen bonding motifs in halide, tetrafluoroborate, hexafluorophosphate, and tetraarylborate salts of chiral cationic ruthenium and cobalt guanidinobenzimidazole hydrogen bond donor catalysts; acceptor properties of the "BArf―anion. Polyhedron, 2020, 187, 114618.	2.2	11
263	Generalized molecular orbital theory. Chemical Physics Letters, 1979, 61, 461-464.	2.6	10
264	Theoretical studies of inorganic and organometallic reaction mechanisms. 8. Hydrogen exchange in the β-agostic ethylene complex of cyclopentadienyl rhodium. Journal of Organometallic Chemistry, 1994, 478, 197-203.	1.8	10
265	Ab Initio Calculations of the Geometry and Vibrational Frequencies of the Triplet State of Tungsten Pentacarbonyl Amine:Â A Model for the Unification of the Preresonance Raman and the Time-Resolved Infrared Experiments. Journal of the American Chemical Society, 1997, 119, 2885-2888.	13.7	10
266	Disulfido iron–manganese carbonyl cluster complexes: Synthesis, structure, bonding and properties of the radical CpFeMn2(CO)7(μ3-S2)2. Journal of Organometallic Chemistry, 2008, 693, 2732-2738.	1.8	10
267	The Rich Structural Chemistry Displayed by the Carbon Monoxide as a Ligand to Metal Complexes. Structure and Bonding, 2016, , 199-248.	1.0	10
268	Separation, speciation, and mechanism of astatine and bismuth extraction from nitric acid into 1-octanol and methyl anthranilate. Separation and Purification Technology, 2022, 282, 120088.	7.9	10
269	Electronic structure of metal dimers. Photoelectron spectra and molecular orbital calculations of dicarbonyl- and dinitrosyl-bridged cobalt, rhodium, and iridium cyclopentadienyl dimers. Organometallics, 1988, 7, 1923-1930.	2.3	9
270	The vibrational spectrum of Tp3,5-MeRhH2(H2): a computational and inelastic neutron scattering study. Inorganica Chimica Acta, 2002, 330, 240-249.	2.4	9

#	Article	IF	CITATIONS
271	SYNERGY BETWEEN THEORY AND EXPERIMENT AS APPLIED TO H/D EXCHANGE ACTIVITY ASSAYS IN [Fe]H2ase ACTIVE SITE MODELS. Advances in Inorganic Chemistry, 2004, , 1-26.	1.0	9
272	Density Functional Theory Study of the Reaction Mechanism for Competitive Carbonâ^'Hydrogen and Carbonâ^'Halogen Bond Activations Catalyzed by Transition Metal Complexes. Journal of Physical Chemistry A, 2009, 113, 2152-2157.	2.5	9
273	A Reduced 2Fe2S Cluster Probe of Sulfur–Hydrogen versus Sulfur–Gold Interactions. Angewandte Chemie - International Edition, 2015, 54, 11102-11106.	13.8	9
274	Addition of ethylene to a ï€-conjugated two-dimensional nickel-based organometallic framework with implications for olefin separation. Journal of Molecular Modeling, 2015, 21, 107.	1.8	9
275	Study of stacking interactions between two neutral tetrathiafulvalene molecules in Cambridge Structural Database crystal structures and by quantum chemical calculations. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 1-7.	1.1	9
276	Generalized-molecular-orbital theory: Simple multiconfiguration self-consistent-field method. International Journal of Quantum Chemistry, 1978, 14, 613-621.	2.0	8
277	Theoretical study of the structure of tetraborane(10). Chemical Physics Letters, 1981, 84, 194-196.	2.6	8
278	Quantum mechanical prediction of hydride locations in transition-metal systems. Journal of the American Chemical Society, 1986, 108, 1695-1696.	13.7	8
279	Basis sets for geometry optimizations of second-row transition metal inorganic and organometallic complexes. Journal of Computational Chemistry, 1991, 12, 923-933.	3.3	8
280	DENSITY FUNCTIONAL STUDIES OF IRIDIUM CATALYZED ALKANE DEHYDROGENATION. Advances in Inorganic Chemistry, 2003, , 321-349.	1.0	8
281	Carbon-hydrogen bond activation by a titanium neopentylidene complex. Journal of Coordination Chemistry, 2016, 69, 1759-1768.	2.2	8
282	Influence of metal ion on chelate–aryl stacking interactions. International Journal of Quantum Chemistry, 2018, 118, e25629.	2.0	8
283	Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings. A Systematic Study of Crystal Structures and Quantum-Chemical Calculations. Crystal Growth and Design, 2019, 19, 5619-5628.	3.0	8
284	Silylation of Pyridine, Picolines, and Quinoline with a Zinc Catalyst. ACS Omega, 2020, 5, 1528-1539.	3.5	8
285	Stacking interactions of resonance-assisted hydrogen-bridged rings and C ₆ -aromatic rings. Physical Chemistry Chemical Physics, 2020, 22, 13721-13728.	2.8	8
286	Electronic structure of metal clusters. 6. Photoelectron spectra and molecular orbital calculations of bis(.mu.3-sulfido)- and bis(.mu.3-selenido)nonacarbonyltriosmium. Inorganic Chemistry, 1988, 27, 2250-2255.	4.0	7
287	On the origin of apparently short carbon–carbon double bonds in transition-metal vinyl complexes. Polyhedron, 1999, 18, 1717-1724.	2.2	7
288	Quantum Catalysis: The Modeling of Catalytic Transition States. ACS Symposium Series, 1999, , 2-17.	0.5	7

#	Article	IF	CITATIONS
289	Perspective on "The spectra and electronic structure of the tetrahedral ions MnO â^' 4 , CrO â^' 4 , and ClO â^' 4 ". Theoretical Chemistry Accounts, 2000, 103, 221-224.	1.4	7
290	Allyl Ligand Reactivity in Tantalum(V) Compounds: Experimental and Computational Evidence for Allyl Transfer to the Formamidinate Ligand in <i>fac</i> -Ta(NMe ₂) ₃ (î ¹ -allyl)[^{<i>i</i>/i>} PrNC(H)N ^{<i>i via a Metallo-Claisen Rearrangement. Organometallics, 2011, 30, 5832-5843.</i>}		∍Pr] ⁷
291	The stacking interactions of bipyridine complexes: the influence of the metal ion type on the strength of interactions. Journal of Molecular Modeling, 2016, 22, 30.	1.8	7
292	Methane Activations by Titanium Neopentylidene Complexes: Electronic Resilience and Steric Control. Inorganic Chemistry, 2017, 56, 9264-9272.	4.0	7
293	Cyanide Docking and Linkage Isomerism in Models for the Artificial [FeFe]-Hydrogenase Maturation Process. Journal of the American Chemical Society, 2018, 140, 9904-9911.	13.7	7
294	Influence of chelate ring type on chelate–chelate and chelate–aryl stacking: the case of nickel bis(dithiolene). Physical Chemistry Chemical Physics, 2019, 21, 1198-1206.	2.8	7
295	Computation and Interpretation of Electron Distributions in Inorganic Molecules. , 1982, , 205-220.		7
296	A study of catalysts derived from supported cobalt carbonyl clusters: Carbon monoxide hydrogenation and XPS analysis. Inorganica Chimica Acta, 1987, 129, 153-161.	2.4	6
297	Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms 13: Methane, Ethylene, and Acetylene Activation at a Cationic Iridium Center. ACS Symposium Series, 1999, , 138-150.	0.5	6
298	Investigating the Electronic Structure of the Atox1 Copper(I) Transfer Mechanism with Density Functional Theory. Inorganic Chemistry, 2013, 52, 10387-10393.	4.0	6
299	Molybdenum Trihydride Complexes: Computational Determinations of Hydrogen Positions and Rearrangement Mechanisms. Inorganic Chemistry, 2015, 54, 6380-6385.	4.0	6
300	Host–Guest Behavior of a Heavy-Atom Heterocycle Re4(CO)16(μ-SbPh2)2(μ-H)2 Obtained from a Palladium-Assisted Ring Opening Dimerization of Re2(CO)8(μ-SbPh2)(μ-H). Inorganic Chemistry, 2015, 54, 3536-3544.	4.0	6
301	Role of High-Spin Species and Pendant Amines in Electrocatalytic Alcohol Oxidation by a Nickel Phosphine Complex. ACS Catalysis, 2022, 12, 2729-2740.	11.2	6
302	Photoelectron spectral assignments based on ab initio MO calculations for the bicyclic phosphorus compounds P[OCH2]3CMe and P[CH2O]3CMe. Journal of the Chemical Society Chemical Communications, 1978, , 161.	2.0	5
303	The role of triplet states in the long wavelength absorption region of bromine nitrate. Journal of Chemical Physics, 2003, 119, 7864-7870.	3.0	5
304	Carbon–hydrogen vs. carbon–halogen oxidative addition of chlorobenzene to a cationic iridium(I) system — A density functional theory study. Canadian Journal of Chemistry, 2009, 87, 1460-1469.	1.1	5
305	Photoinduced Terminal Hydride of [FeFe]-Hydrogenase Biomimetic Complexes. Inorganic Chemistry, 2019, 58, 13737-13741.	4.0	5
306	Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations. Organometallics, 2020, 39, 3306-3314.	2.3	5

#	Article	IF	CITATIONS
307	Electronic structures of the isolobal pair, Ru3(CO)9(CH)2 and (BH)3(CH)2; the eighteen-electron rule versus skeletal electron-pair counting. Inorganica Chimica Acta, 1993, 213, 75-82.	2.4	4
308	Bonding and Reactivity in the Electronically Unsaturated Hydrogen-Bridged Dimer [Ru ₃ (CO) ₈ (μ ₃ -CMe)(μ-H) ₂ (μ ₃ -H)] ₂ (μ ₃ -H)] ₂	\ଅାହ>'	4
309	Comparison of the FeO ²⁺ and FeS ²⁺ complexes in the cyanide and isocyanide ligand environment for methane hydroxylation. Journal of Computational Chemistry, 2012, 33, 1448-1457.	3.3	4
310	The mechanism of addition of aldehydes to germene in different solvents: A DFT study. Journal of Organometallic Chemistry, 2013, 748, 8-12.	1.8	4
311	Carbon–Hydrogen Bond Activation in Bis(2,6-dimethylbenzenethiolato)tris(trimethylphosphine)ruthenium(II): Ligand Dances and Solvent Transformations. Organometallics, 2015, 34, 3129-3140.	2.3	4
312	Recent computational studies on transitionâ€metal carbon–hydrogen bond activation of alkanes. International Journal of Quantum Chemistry, 2018, 118, e25605.	2.0	4
313	Stacking interaction potential energy surfaces of square-planar metal complexes containing chelate rings. Advances in Inorganic Chemistry, 2019, , 159-189.	1.0	4
314	Platinum(<scp>ii</scp>) alkyl complexes of chelating dibridgehead diphosphines P((CH ₂) _{<i>n</i>_{)₃P (<i>n</i> = 14, 18, 22); facile <i>cis</i>/<i>trans</i> isomerizations interconverting gyroscope and parachute like adducts. Dalton Transactions, 2021, 50, 12457-12477.}}	3.3	4
315	Computational Investigation of Dichloromethane Ligand Substitution in the Enantiopure Cation [(η ⁵ -C ₅ H ₅)Re(NO)(PPh ₃)(ClCH ₂ Cl)] ^{+a Functional Equivalent of a Chiral Lewis Acid. Organometallics, 2021, 40, 742-759.}	ıp2≽3;	4
316	Macrocyclic Complexes Derived from Four <i>cis</i> ‣ ₂ Pt Corners and Four Butadiynediyl Linkers; Syntheses, Electronic Structures, and Square versus Skew Rhombus Geometries. Chemistry - A European Journal, 2021, 27, 10021-10039.	3.3	4
317	Cooperative redox and spin activity from three redox congeners of sulfur-bridged iron nitrosyl and nickel dithiolene complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
910	Synthesis and characterization of some new complexes of the Vaska-type trans-[IrX(CO)L2] (Xî—»Cl or I;) Tj ETQq	0	
318	Inorganica Chimica Acta, 1992, 198-200, 429-435.	2.4	3
319	Computational study of the cycloaddition reactivity of the osmium silylyne. Inorganica Chimica Acta, 2014, 422, 40-46.	2.4	3
320	Facile Pâ^'C/Câ^'H Bond leavage Reactivity of Nickel Bis(diphosphine) Complexes. Chemistry - A European Journal, 2016, 22, 9493-9497.	3.3	3
321	Structure and Magnetization Dynamics of Dyâ^'Fe and Dyâ^'Ru Bonded Complexes. Angewandte Chemie, 2018, 130, 8276-8280.	2.0	3
322	Basis sets for transition metals: Optimized outer p functions. Journal of Computational Chemistry, 1996, 17, 1359-1370.	3.3	3
323	Nickel–Borolide Complexes and Their Complex Electronic Structure. Inorganic Chemistry, 2021, 60, 16160-16167.	4.0	3
324	Protonating metal-metal bonds: Changing the metal-metal interaction from bonding, to nonbonding, and to antibonding. Polyhedron, 2022, 212, 115585.	2.2	3

#	ARTICLE	IF	CITATIONS
325	A unique coplanar multi-center bonding network in doubly acetylide-bridged binuclear zirconocene complexes: A density functional theory study. Journal of Organometallic Chemistry, 2007, 692, 4760-4767.	1.8	2
326	Theoretical study of the biologically important dioxo diiron diamond core structures. Theoretical Chemistry Accounts, 2008, 120, 467-478.	1.4	2
327	Theoretical investigation on the reaction of HS+ with CH3NH2. Chemical Papers, 2014, 68, .	2.2	2
328	Molybdenum Trihydride Complexes: Computational Model of Oxidatively Induced Reductive Elimination of Dihydrogen. Inorganic Chemistry, 2017, 56, 9653-9659.	4.0	2
329	Syntheses, Structures, Reactivities, and Basicities of Quinolinyl and Isoquinolinyl Complexes of an Electron Rich Chiral Rhenium Fragment and Their Electrophilic Addition Products. Chemistry - A European Journal, 2021, 27, 13399-13417.	3.3	2
330	Basis sets for transition metals: Optimized outer p functions. , 1996, 17, 1359.		2
331	Perspective on "The spectra and electronic structure of the tetrahedral ions MnO 4 â^' , CrO 4 â^' , and ClO 4 â^' ― , 2000, , 221-224.		2
332	Kinetic and Computational Analysis of CO Substitution in a Dinuclear Osmium Carbonyl Complex: Intersection between Dissociative and Dissociative-Interchange Mechanisms. Inorganic Chemistry, 2022, 61, 246-253.	4.0	2
333	Syntheses, Rearrangements, and Structural Analyses of Unsaturated Nitrogen Donor Ligands Derived from Diphenyldiazomethane and the Chiral Rhenium Lewis Acid [(η5-C5H5)Re(NO)(PPh3)]+. Dalton Transactions, 2022, , .	3.3	2
334	Multiple Metal-Metal and Metal-Carbon Bonds. , 1986, , 391-401.		1
335	Computational Investigations into Hydrogen-Atom Abstraction from Rhodium Hydride Complexes by Methyl Radicals in Aqueous Solution. European Journal of Inorganic Chemistry, 2011, 2011, 4901-4905.	2.0	1
336	Theoretical investigation on the mechanism of FeCl3-catalysed cross-coupling reaction of alcohols with alkenes. Molecular Physics, 2014, 112, 2107-2113.	1.7	1
337	Theoretical Analysis of Competing Pathways for Carbon–Hydrogen Activation of Cyclopentadienyl–Triphenylphosphine–Iridium in Benzene. Inorganic Chemistry, 2019, 58, 16553-16558.	4.0	1
338	Full Conformational Analyses of the Ultrafast Isomerization in Penta-coordinated Ru(S2C2(CF3)2)(CO)(PPh3)2: One Compound, Two Crystal Structures, Three CO Frequencies, 24 Stereoisomers, and 48 Transition States. Inorganic Chemistry, 2020, 59, 11757-11769.	4.0	1
339	Toward Frameworks with Multiple Aligned and Interactive Fe(CO) ₃ Rotators: Syntheses and Structures of Diiron Complexes Linked by Two <i>trans</i> -Diaxial α,i%-Diphosphine Ligands Ar ₂ P(CH ₂) _{<i>n</i>} PAr ₂ . Inorganic Chemistry, 2021, 60. 3314-3330.	4.0	1
340	Reactivity of Methyl Diruthenium Complexes with CO and Bipyridine Ligands. Organometallics, 0, , .	2.3	1
341	Benzene chromium tricarbonyl revisited: Theoretical study of the structure and dynamics of (η6-C6H6)Cr(CO)3. , 2000, 77, 152.		1
	The Flastwards Structure of Matel Dimons and Matel Clusters: The Fighteen Flastward Dulace, Shelatel		

The Electronic Structure of Metal Dimers and Metal Clusters: The Eighteen-Electron Rule vs. Skeletal Electron-Pair Counting. , 1990, , 265-273.

#	Article	IF	CITATIONS
343	Density Functional Studies of Catalytic Alkane Dehydrogenation by an Iridium Pincer Complex with and without a Hydrogen Acceptor. ChemInform, 2003, 34, no.	0.0	0
344	Density Functional Studies of Iridium-Catalyzed Alkane Dehydrogenation. ChemInform, 2004, 35, no.	0.0	0
345	Generalized molecular orbital theory: Ground state and ionization potentials of water and dinitrogen. International Journal of Quantum Chemistry, 2009, 16, 195-203.	2.0	0
346	Unexpected μ-oxo five-member ring intermediates for oxygen atom transfer between osmium complexes. Journal of Coordination Chemistry, 2010, 63, 2846-2853.	2.2	0
347	Theoretical study on the reaction of PH+ with H2O. Computational and Theoretical Chemistry, 2011, 966, 328-333.	2.5	0
348	Innenrücktitelbild: Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts (Angew. Chem. 36/2016). Angewandte Chemie, 2016, 128, 11079-11079.	2.0	0
349	Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorganic Chemistry, 2021, 60, 7051-7061.	4.0	0
350	Frontispiece: Macrocyclic Complexes Derived from Four <i>cis</i> ‣ ₂ Pt Corners and Four Butadiynediyl Linkers; Syntheses, Electronic Structures, and Square versus Skew Rhombus Geometries. Chemistry - A European Journal, 2021, 27, .	3.3	0
351	Ab Initio and Density Functional Theory Applied to Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes. , 1997, , 255-277.		0