
Brett H Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7334845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E-waste: An assessment of global production and environmental impacts. Science of the Total Environment, 2009, 408, 183-191.	8.0	1,332
2	A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 2011, 159, 3269-3282.	7.5	1,251
3	Critical Assessment of Chelant-Enhanced Metal Phytoextraction. Environmental Science & Technology, 2006, 40, 5225-5232.	10.0	400
4	Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems and Environment, 2014, 191, 124-132.	5.3	303
5	The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 1998, 203, 47-56.	3.7	292
6	Phytomining. Trends in Plant Science, 1998, 3, 359-362.	8.8	290
7	Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil, 2000, 227, 301-306.	3.7	282
8	The Phytomanagement of Trace Elements in Soil. Critical Reviews in Plant Sciences, 2009, 28, 240-266.	5.7	265
9	Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 1999, 67, 407-415.	3.2	229
10	Phytostabilization. Advances in Agronomy, 2011, , 145-204.	5.2	217
11	Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Science of the Total Environment, 2011, 409, 3206-3210.	8.0	211
12	The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 1997, 60, 115-126.	3.2	209
13	Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 2020, 253, 126646.	8.2	200
14	The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. Journal of Geochemical Exploration, 1997, 59, 75-86.	3.2	198
15	Arsenic Contamination and its Risk Management in Complex Environmental Settings. Advances in Agronomy, 2005, 86, 1-82.	5.2	198
16	Antimony in the soil - plant system - a review. Environmental Chemistry, 2009, 6, 106.	1.5	171
17	Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environmental and Experimental Botany, 2006, 58, 206-215.	4.2	169
18	White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 2004, 132, 145-155.	7.5	167

#	Article	IF	CITATIONS
19	Phytoextraction: an assessment of biogeochemical and economic viability. Plant and Soil, 2003, 249, 117-125.	3.7	158
20	Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study. Environmental Pollution, 2008, 152, 50-59.	7.5	158
21	Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytologist, 2003, 158, 279-285.	7.3	135
22	Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere, 2010, 80, 901-907.	8.2	134
23	Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems and Environment, 2010, 136, 49-58.	5.3	129
24	A Critical View of Current State of Phytotechnologies to Remediate Soils: Still a Promising Tool?. Scientific World Journal, The, 2012, 2012, 1-10.	2.1	119
25	Soil Amendments Affecting Nickel and Cobalt Uptake by Berkheya coddii: Potential Use for Phytomining and Phytoremediation. Annals of Botany, 1999, 84, 689-694.	2.9	108
26	Phytoextraction: Where's the action?. Journal of Geochemical Exploration, 2015, 151, 34-40.	3.2	102
27	Phytoremediation: using plants as biopumps to improve degraded environments. Soil Research, 2003, 41, 599.	1.1	101
28	Phytofiltration of mercury-contaminated water: Volatilisation and plant-accumulation aspects. Environmental and Experimental Botany, 2008, 62, 78-85.	4.2	96
29	Mercury volatilisation and phytoextraction from base-metal mine tailings. Environmental Pollution, 2005, 136, 341-352.	7.5	93
30	Poplar for the phytomanagement of boron contaminated sites. Environmental Pollution, 2007, 150, 225-233.	7.5	93
31	The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Economic Geology, 1999, 94, 109-113.	3.8	92
32	Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environmental Pollution, 2008, 153, 668-676.	7.5	88
33	Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 2007, 145, 700-707.	7.5	87
34	Induced plant uptake and transport of mercury in the presence of sulphurâ€containing ligands and humic acid. New Phytologist, 2005, 166, 445-454.	7.3	83
35	UPTAKE OF THALLIUM BY VEGETABLES: ITS SIGNIFICANCE FOR HUMAN HEALTH, PHYTOREMEDIATION, AND PHYTOMINING. Journal of Plant Nutrition, 2001, 24, 1205-1215.	1.9	81
36	Neutron radiography as a tool for revealing root development in soil: capabilities and limitations. Plant and Soil, 2009, 318, 243-255.	3.7	81

#	Article	IF	CITATIONS
37	Lignite Reduces the Solubility and Plant Uptake of Cadmium in Pasturelands. Environmental Science & Technology, 2013, 47, 4497-4504.	10.0	76
38	Visualization of root growth in heterogeneously contaminated soil using neutron radiography. European Journal of Soil Science, 2007, 58, 802-810.	3.9	74
39	Combustion of Salix used for phytoextraction: The fate of metals and viability of the processes. Biomass and Bioenergy, 2013, 49, 160-170.	5.7	73
40	Carbonaceous soil amendments to biofortify crop plants with zinc. Science of the Total Environment, 2013, 465, 308-313.	8.0	73
41	Uptake of arsenic by New Zealand watercress (Lepidium sativum). Science of the Total Environment, 2003, 301, 67-73.	8.0	71
42	Phytoremediation of Mercury-Contaminated Mine Tailings by Induced Plant-Mercury Accumulation. Environmental Practice, 2004, 6, 165-175.	0.3	70
43	Antimony uptake by different plant species from nutrient solution, agar and soil. Environmental Chemistry, 2009, 6, 144.	1.5	69
44	Biomass Production on Trace Element–Contaminated Land: A Review. Environmental Engineering Science, 2012, 29, 823-839.	1.6	68
45	Title is missing!. Plant and Soil, 2003, 254, 415-423.	3.7	67
46	Municipal composts reduce the transfer of Cd from soil to vegetables. Environmental Pollution, 2016, 213, 8-15.	7.5	62
47	The distribution and fate of arsenic in the Waikato River system, North Island, New Zealand. Chemical Speciation and Bioavailability, 1995, 7, 89-96.	2.0	60
48	Metal extractability in acidic and neutral mine tailings from the Cartagena-La Unión Mining District (SE Spain). Applied Geochemistry, 2008, 23, 1232-1240.	3.0	59
49	Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environmental Geochemistry and Health, 2008, 30, 187-191.	3.4	58
50	From mine to mind and mobiles – Lithium contamination and its risk management. Environmental Pollution, 2021, 290, 118067.	7.5	58
51	Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agriculture, Ecosystems and Environment, 2001, 87, 315-321.	5.3	53
52	Lithium as an emerging environmental contaminant: Mobility in the soil-plant system. Chemosphere, 2018, 197, 1-6.	8.2	52
53	Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environmental and Experimental Botany, 2010, 69, 24-31.	4.2	51
54	Vegetation of tuscan ultramafic soils in relation to edaphic and physical factors. Folia Geobotanica, 1998, 33, 113-131.	0.9	48

#	Article	IF	CITATIONS
55	Effect of Thioligands on Plant-Hg Accumulation and Volatilisation from Mercury-contaminated Mine Tailings. Plant and Soil, 2005, 275, 233-246.	3.7	48
56	Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutrient Cycling in Agroecosystems, 2010, 87, 339-352.	2.2	44
57	Phytoremediation and long-term site management of soil contaminated with pentachlorophenol (PCP) and heavy metals. Journal of Environmental Management, 2006, 79, 232-241.	7.8	43
58	Response of native grasses and Cicer arietinum to soil polluted with mining wastes: Implications for the management of land adjacent to mine sites. Environmental and Experimental Botany, 2009, 65, 198-204.	4.2	43
59	METAL UPTAKE AND ALLOCATION IN TREES GROWN ON CONTAMINATED LAND: IMPLICATIONS FOR BIOMASS PRODUCTION. International Journal of Phytoremediation, 2013, 15, 77-90.	3.1	43
60	Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation. Soil Research, 2002, 40, 1331.	1.1	42
61	Antimony uptake and toxicity in sunflower and maize growing in SbIII and SbV contaminated soil. Plant and Soil, 2010, 334, 235-245.	3.7	42
62	Combining classification tree analyses with interviews to study why sub-alpine grasslands sometimes revert to forest: A case study from the Swiss Alps. Agricultural Systems, 2008, 96, 124-138.	6.1	41
63	Age- and climate- related water use patterns of apple trees on China's Loess Plateau. Journal of Hydrology, 2020, 582, 124462.	5.4	41
64	The Phytoremediation Potential of Thallium-Contaminated Soils UsingIberis and BiscutellaSpecies. International Journal of Phytoremediation, 1999, 1, 327-338.	3.1	40
65	Plantâ€available elements in soils and their influence on the vegetation over ultramafic ("serpentine") rocks in New Zealand. Journal of the Royal Society of New Zealand, 1996, 26, 457-468.	1.9	39
66	Boron Accumulation and Toxicity in Hybrid Poplar (<i>Populus nigra</i> × <i>euramericana</i>). Environmental Science & Technology, 2011, 45, 10538-10543.	10.0	39
67	Cadmium Concentrations in New Zealand Pastures: Relationships to Soil and Climate Variables. Journal of Environmental Quality, 2014, 43, 917-925.	2.0	39
68	Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand. Science of the Total Environment, 2006, 364, 113-123.	8.0	37
69	The nickel phytoextraction potential of some ultramafic soils as determined by sequential extraction. Geoderma, 1999, 87, 293-304.	5.1	36
70	Natural and induced heavyâ€netal accumulation by Arrhenatherum elatius: Implications for phytoremediation. Communications in Soil Science and Plant Analysis, 2000, 31, 413-421.	1.4	36
71	Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS ONE, 2017, 12, e0180240.	2.5	36
72	Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species. Environmental Pollution, 2009, 157, 2189-2196.	7.5	35

#	Article	IF	CITATIONS
73	The impact of CCA-treated posts in vineyards on soil and ground water. Water Science and Technology, 2007, 56, 161-168.	2.5	33
74	Trace element accumulation by poplars and willows used for stock fodder. New Zealand Journal of Agricultural Research, 2005, 48, 489-497.	1.6	32
75	The effect of lime on the rhizosphere processes and elemental uptake of white lupin. Environmental and Experimental Botany, 2015, 118, 85-94.	4.2	32
76	The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 2018, 209, 675-684.	8.2	32
77	The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea. Science of the Total Environment, 2016, 543, 601-608.	8.0	31
78	Soil cadmium mobilisation by dissolved organic matter from soil amendments. Chemosphere, 2021, 271, 129536.	8.2	30
79	Nutritional Status of Mediterranean Trees Growing in a Contaminated and Remediated Area. Water, Air, and Soil Pollution, 2010, 205, 305-321.	2.4	28
80	Potential Environmental Benefits from Blending Biosolids with Other Organic Amendments before Application to Land. Journal of Environmental Quality, 2017, 46, 481-489.	2.0	28
81	Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations. Plant and Soil, 2010, 328, 291-302.	3.7	27
82	Interactions between earthworm burrowing, growth of a leguminous shrub and nitrogen cycling in a former agricultural soil. Applied Soil Ecology, 2017, 110, 79-87.	4.3	26
83	Trace metal mobilization by organic soil amendments: insights gained from analyses of solid and solution phase complexation of cadmium, nickel and zinc. Chemosphere, 2018, 199, 684-693.	8.2	25
84	Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. Environmental and Experimental Botany, 2020, 177, 104122.	4.2	25
85	Risk assessment of vegetables irrigated with arsenic-contaminated water. Environmental Sciences: Processes and Impacts, 2013, 15, 1866.	3.5	24
86	Cadmium Concentrations in New Zealand Wheat: Effect of Cultivar Type, Soil Properties, and Crop Management. Journal of Environmental Quality, 2019, 48, 701-708.	2.0	24
87	The Mobility of Silver Nanoparticles and Silver Ions in the Soilâ€Plant System. Journal of Environmental Quality, 2019, 48, 1835-1841.	2.0	23
88	Native plants and nitrogen in agricultural landscapes of New Zealand. Plant and Soil, 2015, 394, 407-420.	3.7	22
89	Cadmium uptake by onions, lettuce and spinach in New Zealand: Implications for management to meet regulatory limits. Science of the Total Environment, 2019, 668, 780-789.	8.0	22
90	Environmental and edaphic factors affecting soil cadmium uptake by spinach, potatoes, onion and wheat. Science of the Total Environment, 2020, 713, 136694.	8.0	22

#	Article	IF	CITATIONS
91	Edaphic influences on a New Zealand ultramafic ("serpentineâ€) flora: a statistical approach. Plant and Soil, 1997, 188, 11-20.	3.7	21
92	Copper uptake studies on <i>Erica andevalensis,</i> a metalâ€ŧolerant plant from southwestern Spain. Communications in Soil Science and Plant Analysis, 1999, 30, 1615-1624.	1.4	21
93	Magnetic resonance imaging methods to reveal the realâ€ŧime distribution of nickel in porous media. European Journal of Soil Science, 2008, 59, 476-485.	3.9	21
94	Effects of Lime and Organic Amendments Derived from Varied Source Materials on Cadmium Uptake by Potato. Journal of Environmental Quality, 2017, 46, 836-844.	2.0	21
95	Effect of Pine Waste and Pine Biochar on Nitrogen Mobility in Biosolids. Journal of Environmental Quality, 2016, 45, 360-367.	2.0	20
96	The potential in-situ antimicrobial ability of Myrtaceae plant species on pathogens in soil. Soil Biology and Biochemistry, 2016, 96, 1-3.	8.8	20
97	Endemic Plants as Browse Crops in Agricultural Landscapes of New Zealand. Agroecology and Sustainable Food Systems, 2015, 39, 224-242.	1.9	19
98	Heavy metals in suburban gardens and the implications of land-use change following a major earthquake. Applied Geochemistry, 2018, 88, 10-16.	3.0	19
99	Antioxidant Enzyme Activity and Lipid Peroxidation in <i>Aporrectodea caliginosa</i> Earthworms Exposed to Silver Nanoparticles and Silver Nitrate in Spiked Soil. Environmental Toxicology and Chemistry, 2020, 39, 1257-1266.	4.3	19
100	Black Soldier Fly-based bioconversion of biosolids creates high-value products with low heavy metal concentrations. Resources, Conservation and Recycling, 2022, 180, 106149.	10.8	19
101	In defence of plants as biomonitors of soil quality. Environmental Pollution, 2006, 143, 1-3.	7.5	18
102	The Phytoremediation Potential of Native Plants on New Zealand Dairy Farms. International Journal of Phytoremediation, 2014, 16, 719-734.	3.1	18
103	Soil plant interactions of Populus alba in contrasting environments. Journal of Environmental Management, 2014, 132, 329-337.	7.8	18
104	Interactions of native and introduced earthworms with soils and plant rhizospheres in production landscapes of New Zealand. Applied Soil Ecology, 2015, 96, 141-150.	4.3	18
105	Plants for nitrogen management in riparian zones: A proposed traitâ€based framework to select effective species. Ecological Management and Restoration, 2019, 20, 202-213.	1.5	18
106	Dimethylglyoxime (DMG) staining for semi-quantitative mapping of Ni in plant tissue. Environmental and Experimental Botany, 2011, 71, 232-240.	4.2	17
107	Leaching of copper from contaminated soil following the application of EDTA. I. Repacked soil experiments and a model. Soil Research, 2003, 41, 323.	1.1	15
108	Zinc-enriched and zinc-biofortified feed as a possible animal remedy in pastoral agriculture: Animal health and environmental benefits. Journal of Geochemical Exploration, 2012, 121, 30-35.	3.2	15

#	Article	IF	CITATIONS
109	The potential of L.Âscoparium , K.Ârobusta and P.Âradiata to mitigate N-losses in silvopastural systems. Environmental Pollution, 2017, 225, 12-19.	7.5	15
110	Potential Use of Biosolids to Reforest Degraded Areas with New Zealand Native Vegetation. Journal of Environmental Quality, 2017, 46, 906-914.	2.0	15
111	Investigating arsenic impact of ACC treated timbers in compost production (A case study in) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 14
112	Phytomanagement of a metal(loid)-contaminated agricultural site using aromatic and medicinal plants to produce essential oils: analysis of the metal(loid) fate in the value chain Environmental Science and Pollution Research, 2021, 28, 62155-62173.	5.3	14
113	Leaching of copper from contaminated soil following the application of EDTA. II. Intact core experiments and model testing. Soil Research, 2003, 41, 335.	1.1	14
114	Cobalt and nickel accumulation in <i>Nyssa</i> (tupelo) species and its significance for New Zealand agriculture. New Zealand Journal of Agricultural Research, 1999, 42, 235-240.	1.6	13
115	Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS. Journal of Hazardous Materials, 2011, 189, 472-478.	12.4	12
116	Production of Biomass Crops Using Biowastes on Lowâ€Fertility Soil: 2. Effect of Biowastes on Nitrogen Transformation Processes. Journal of Environmental Quality, 2016, 45, 1970-1978.	2.0	12
117	Response of Leptospermum scoparium , Kunzea robusta and Pinus radiata to contrasting biowastes. Science of the Total Environment, 2017, 587-588, 258-265.	8.0	12
118	MÄnuka (Leptospermum scoparium) roots forage biosolids in low fertility soil. Environmental and Experimental Botany, 2017, 133, 151-158.	4.2	12
119	Biowastes to augment the essential oil production of Leptospermum scoparium and Kunzea robusta in low-fertility soil. Plant Physiology and Biochemistry, 2019, 137, 213-221.	5.8	12
120	Expression of selected genes involved in cadmium detoxification in tobacco plants grown on a sulphur-amended metal-contaminated field. Environmental and Experimental Botany, 2011, 70, 158-165.	4.2	11
121	Effect of dairy effluent on the biomass, transpiration, and elemental composition of Salix kinuyanagi Kimura. Biomass and Bioenergy, 2012, 37, 282-288.	5.7	11
122	Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill. Science of the Total Environment, 2013, 447, 515-524.	8.0	11
123	Trace Element Contaminants and Radioactivity from Phosphate Fertiliser. , 2016, , 231-266.		11
124	Seabird guano and phosphorus fractionation in a rhizosphere with earthworms. Applied Soil Ecology, 2017, 120, 197-205.	4.3	11
125	Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agricultural Water Management, 2021, 255, 107010.	5.6	11
126	Solubility, Mobility, and Bioaccumulation of Trace Elements. , 2005, , 97-110.		10

#	Article	IF	CITATIONS
127	Analysing the preferential transport of lead in a vegetated roadside soil using lysimeter experiments and a dual-porosity model. European Journal of Soil Science, 2007, 59, 070822040136006-???.	3.9	10
128	Mercury and arsenic in trout from the Taupo Volcanic Zone and Waikato River, North Island, New Zealand. Chemical Speciation and Bioavailability, 1995, 7, 27-32.	2.0	9
129	Production of Biomass Crops Using Biowastes on Lowâ€Fertility Soil: 1. Influence of Biowastes on Plant and Soil Quality. Journal of Environmental Quality, 2016, 45, 1960-1969.	2.0	9
130	Legume nutrition is improved by neighbouring grasses. Plant and Soil, 2022, 475, 443-455.	3.7	9
131	Comparing response of ryegrass-white clover pasture to gibberellic acid and nitrogen fertiliser applied in late winter and spring. New Zealand Journal of Agricultural Research, 2016, 59, 18-31.	1.6	8
132	Effect of cultivar type and soil properties on cadmium concentrations in potatoes. New Zealand Journal of Crop and Horticultural Science, 2019, 47, 182-197.	1.3	8
133	Chemical Elements and the Quality of MÄnuka (Leptospermum scoparium) Honey. Foods, 2021, 10, 1670.	4.3	8
134	The Phytomanagement of PFAS-Contaminated Land. International Journal of Environmental Research and Public Health, 2022, 19, 6817.	2.6	8
135	Perceived minerality in sauvignon blanc wine: Chemical reality or cultural construct?. Food Research International, 2016, 87, 168-179.	6.2	7
136	Using Biowastes to Establish Native Plants and Ecosystems in New Zealand. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	7
137	Response of a Pioneering Species (Leptospermum scoparium J.R.Forst. & G.Forst.) to Heterogeneity in a Low-Fertility Soil. Frontiers in Plant Science, 2019, 10, 93.	3.6	7
138	Environmental Parameters Affecting the Concentration of Iodine in New Zealand Pasture. Journal of Environmental Quality, 2019, 48, 1517-1523.	2.0	7
139	Phytoremediation in New Zealand and Australia. Methods in Biotechnology, 2007, , 455-468.	0.2	6
140	Soil disturbance and salinisation on a vineyard affected by landscape recontouring in Marlborough, New Zealand. Catena, 2014, 122, 170-179.	5.0	6
141	Soil phosphorus dynamics along a shortâ€ŧerm ecological restoration trajectory of a coastal sandplain forest in New Zealand. Land Degradation and Development, 2021, 32, 1250-1261.	3.9	6
142	Risks and benefits of pasture irrigation using treated municipal effluent : a lysimeter case study, Canterbury, New Zealand. Environmental Science and Pollution Research, 2020, 27, 11830-11841.	5.3	6
143	An Assessment of Trace Element Accumulation in Palm Oil Production. Sustainability, 2022, 14, 4553.	3.2	6
144	Effects of Increasing Dosages of Acid Mining Wastes in Metal Uptake by Lygeum spartum and Soil Metal Extractability. Water, Air, and Soil Pollution, 2009, 202, 379-383.	2.4	5

#	Article	IF	CITATIONS
145	Plant litter variability and soil N mobility. Soil Research, 2017, 55, 253.	1.1	5
146	Analysis of Mercury-Rich plants and mine tailings using the Hydride-Generation AAS method. Brazilian Archives of Biology and Technology, 2009, 52, 953-960.	0.5	4
147	Response of Populus tremula to heterogeneous B distributions in soil. Plant and Soil, 2012, 358, 403-415.	3.7	4
148	Biowaste Mixtures Affecting the Growth and Elemental Composition of Italian Ryegrass (<i>Lolium) Tj ETQq0 0 0</i>	rgBT /Ove	erlock 10 Tf 5
149	Novel method to determine element concentrations in foliage of poplar and willow cuttings. International Journal of Phytoremediation, 2016, 18, 943-948.	3.1	4
150	Impacts of Endemic <i>Maoridrilus</i> Earthworms (Megascolecidae) in Biosolidsâ€Amended Soil. Journal of Environmental Quality, 2017, 46, 177-184.	2.0	4
151	Element Case Studies: Thallium and Noble Metals. Mineral Resource Reviews, 2018, , 253-261.	1.5	4
152	Cadmium Uptake by Ryegrass and Ryegrass–Clover Mixtures under Different Liming Rates. Journal of Environmental Quality, 2018, 47, 1249-1257.	2.0	4
153	Feasibility of Metal(loid) Phytoextraction from Polluted Soils: The Need for Greater Scrutiny. Environmental Toxicology and Chemistry, 2020, 39, 1469-1471.	4.3	4
154	A riskâ€based approach for the safety analysis of eight trace elements in Chinese flowering cabbage () Tj ETQq0	0 0 rgBT /(Overlock 10 1 4
155	Contaminant Transport in the Root Zone. , 2001, , .		4
156	Plant Species Complementarity in Low-Fertility Degraded Soil. Plants, 2022, 11, 1370.	3.5	4
157	Phytoremediation of microbial contamination in soil by New Zealand native plants. Applied Soil Ecology, 2021, 167, 104040.	4.3	3
158	CURRENT PRACTICE AND FUTURE LAND-USE: THE SUSTAINABILITY OF PRODUCTIVE SECTOR ENVIRONMENTS. Acta Horticulturae, 2005, , 159-164.	0.2	3
159	Nitrous oxide emissions following dairy shed effluent application beneath Kunzea robusta (Myrtaceae) trees. Ecological Engineering, 2017, 99, 473-478.	3.6	2
160	Toxicology assessment of engineered nanomaterials: innovation and tradition. , 2019, , 209-234.		2
161	Biowastes promote essential oil production on degraded soils. Industrial Crops and Products, 2020, 145, 112108.	5.2	2
162	Molecular identification and distribution of native and exotic earthworms in New Zealand human-modified soils. , 2017, 41, .		2

#	Article	IF	CITATIONS
163	Chapter 26 Contaminants in the rootzone: Bioavailability, uptake and transport, and their implications for remediation. Developments in Soil Science, 2008, , 633-655.	0.5	1
164	Agromining of Thallium and Noble Metals. Mineral Resource Reviews, 2021, , 415-423.	1.5	1
165	Agroecology niche for New Zealand's native earthworms. Applied Soil Ecology, 2022, 176, 104506.	4.3	0