Peter K Hepler

List of Publications by Year in descending order

Source: https:||exaly.com/author-pdf/7334183/publications.pdf
Version: 2024-02-01

1 Calcium: A Central Regulator of Plant Growth and Development. Plant Cell, 2005, 17, 2142-2155. 8.6

Polarized Cell Growth in Higher Plants. Annual Review of Cell and Developmental Biology, 2001, 17, 159-187.
9.4

670
2

3 POLLEN GERMINATION AND TUBE GROWTH. Annual Review of Plant Biology, 1997, 48, 461-491.
14.3

669

4 Control of pollen tube growth: role of ion gradients and fluxes. New Phytologist, 2003, 159, 539-563.
7.3

339

5 Pectin Methylesterase, a Regulator of Pollen Tube Growth. Plant Physiology, 2005, 138, 1334-1346.
4.8

324

6 Cytokinesis in Higher Plants. Cell, 1996, 84, 821-824.
28.9

319

7 Pectin Methylesterases and Pectin Dynamics in Pollen Tubes. Plant Cell, 2005, 17, 3219-3226.
6.6

309

8 Actin Polymerization Is Essential for Pollen Tube Growth. Molecular Biology of the Cell, 2001, 12, 2534-2545.

9 Free ca2+ gradient in growing pollen tubes of <i>lilium</i>. Journal of Cell Science, 1992, 101, 7-12.
2.0

247

10 The Regulation of Actin Organization by Actin-Depolymerizing Factor in Elongating Pollen Tubes [W].
Plant Cell, 2002, 14, 2175-2190.

11 Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the
pollen tube. Planta, 2005, 221, 95-104.

MICROTUBULES AND FIBRILS IN THE CYTOPLASM OF COLEUS CELLS UNDERGOING SECONDARY WALL
12 DEPOSITION. Journal of Cell Biology, 1964, 20, 529-533.
5.2

212

13 Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells. PLoS ONE, 2009, 4,
e5744.

MICROTUBULES AND EARLY STAGES OF CELL-PLATE FORMATION IN THE ENDOSPERM OF HAEMANTHUS KATHERINAE BAKER. Journal of Cell Biology, 1968, 38, 437-446.
5.2

180

Rearrangement of Actin Microfilaments in Plant Root Hairs Responding to Rhizobium etli Nodulation
Signalsl. Plant Physiology, 1998, 116, 871-877.
4.8

180

Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth[W]. Plant Cell, 2002, 14, 945-962.
6.6

178

Polymerization. Plant Physiology, 2008, 146, 1611-1621.
Cellular oscillations and the regulation of growth: the pollen tube paradigm. BioEssays, 2000, 23
$86-94$.

25	The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta, 2000, 210, 836-843.	3.2	127
26	The control of the plane of division during stomatal differentiation in Allium. Chromosoma, 1974, 46, 297-326.	2.2	124
27	Calcium lonophore A23187 Stimulates Cytokinin-Like Mitosis in Funaria. Science, 1982, 217, 943-945.	12.6	123
28	Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta, 2000, 210, 329-335.	3.2	123
29	NAD(P)H Oscillates in Pollen Tubes and Is Correlated with Tip Growth. Plant Physiology, 2006, 142, 1460-1468.	4.8	119
30	The role of microtubules in vessel member differentiation inColeus. Protoplasma, 1971, 72, 213-236.	2.1	118
31	Propidium lodide Competes with Ca2+ to Label Pectin in Pollen Tubes and Arabidopsis Root Hairs $\hat{A} \hat{A}$. Plant Physiology, 2011, 157, 175-187.	4.8	118

Oscillatory Increases in Alkalinity Anticipate Growth and May Regulate Actin Dynamics in Pollen Tubes
of Lily. Plant Cell, 2006, 18, 2182-2193.
$6.6 \quad 112$

The role of calcium ions in phytochrome-mediated germination of spores of Onoclea sensibilis L..
3.2 Planta, 1984, 160, 12-20.

110

The Kinesin-like Calmodulin Binding Protein Is Differentially Involved in Cell Division. Plant Cell, 2000, 12, 979-990.
6.6

110
$39 \quad$ The Kinesin-iike

40 Membranes in the Mitotic Apparatus: Their Structure and Function. International Review of Cytology,43 Involvement of extracellular calcium influx in the self-incompatibility response ofPapaver rhoeas.Plant Journal, 2002, 29, 333-345.5.7105

The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sexual Plant Reproduction, 1998, 11, 49-59.
2.2
45 Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant Journal, 1999, 19, 379-386.
Fluorescence microscopic localization of actin in pollen tubes: Comparison of actin antibody and phalloidin staining. Cytoskeleton, 1989, 12, 216-224.5.7103
4.4 102
Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen Effect of extracellular calcium, pH and borate on growth
tubes. Journal of Experimental Botany, 2003, 54, 65-72.
4.8 101
48 Calcium entry into pollen tubes. Trends in Plant Science, 2012, 17, 32-38.8.8101The pollen tube clear zone: Clues to the mechanism of polarized growth. Journal of Integrative Plant49 Biology, 2015, 57, 79-92.8.59950 The Cytoskeleton and Its Regulation by Calcium and Protons. Plant Physiology, 2016, 170, 3-22.4.896
51 Ion Changes in Legume Root Hairs Responding to Nod Factors. Plant Physiology, 2000, 123, 443-452. 4.8 95
Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita
pepo L. leaves. Planta, 1989, 179, 24-31.3.2

$60 \quad$ Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cytoskeleton,
$2005,61,112-127$.

61 Tip growth in pollen tubes: calcium leads the way. Trends in Plant Science, 1997, 2, 79-80. 81

62 Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in
living plant cells. Cytoskeleton, 1993, 24, 205-213.
$4.4 \quad 80$
63
64

Cytochemical localization of peroxidase activity in wound vessel members of Coleus. Canadian
Journal of Botany, 1972, 50, 977-983.

Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta, 2006, 223, 736-745.
$3.2 \quad 75$
Plant $115-\mathrm{kDa}$ Actin-Filament Bundling Protein, P-115-ABP, is a Homologue of Plant Villin and is Widely
Distributed in Cells. Plant and Cell Physiology, 2003, 44, 1088-1099.
The Apical Actin Fringe Contributes to Localized Cell Wall Deposition and Polarized Growth in the
$66 \quad$ Lily Pollen Tube Â Â. Plant Physiology, 2014, 166, 139-151.
4.8

71

Red Light Stimulates an Increase in Intracellular Calcium in the Spores of <i> Onoclea sensibilis</i>.
Plant Physiology, 1985, 77, 8-11.
4.8

70

68 Imaging the actin cytoskeleton in growing pollen tubes. Sexual Plant Reproduction, 2006, 19, 51-62.
2.2

65

> Interplay between lons, the Cytoskeleton, and Cell Wall Properties during Tip Growth. Plant
> 69 Physiology, 2018, 176, 28-40.
> Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta, 1996, 200, 41.
> Cellular oscillations and the regulation of growth: the pollen tube paradigm. BioEssays, 2001, 23,
> 86-94.
4.8

65
3.2
2.5

62

Pollen tube energetics: respiration, fermentation and the race to the ovule. AoB PLANTS, 2011, 2011, plrO19.
Lignification During Secondary Wall Formation in Coleus: An Electron Microscopic Study. American
Journal of Botany, 1970, 57, 85.

Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms.

| 75 | Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin |
| :--- | :--- | :--- |
| strands and chloroplast actin rings. Protoplasma, 1996, 190, 25-38. | |

76 Distribution of membranes and the cytoskeleton during cell plate formation in pollen mother cells of79 Oscillatory Growth in Lily Pollen Tubes Does Not Require Aerobic Energy Metabolism. PlantPhysiology, 2010, 152, 736-746.$4.8 \quad 37$
81 Probing the Plant Actin Cytoskeleton during Cytokinesis and Interphase by Profilin Microinjection.6.634
Plant Cell, 1997, 9, 1815.Roles for kinesin and myosin during cytokinesis. Philosophical Transactions of the Royal Society B:Biological Sciences, 2002, 357, 761-766.
83 The role of actin filaments in the gravitropic response of snapdragon flowering shoots. Planta, 2003,
216, 1034-1042.
3.2 30
Profilin inhibits pollen tube growth through actin-binding, but not poly-l-proline-binding. Planta, 2004, 218, 906-915. 3.2 27
84
3.224
85 Is P-protein actin-like?-not yet. Planta, 1975, 125, 261-271.24
86 Ions and Pollen Tube Growth. , 0, , 47-69. 24
Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes. Plants,3.519
2017, 6, 3.Sperm Delivery in Flowering Plants: The Control of Pollen Tube Growth. BioScience, 2007, 57, 835-844.

92 Chapter 21 Methods for Studying Cell Division in Higher Plants. Methods in Cell Biology, 1998, 61,

93	Microtubule cross-linking activity of Shel ensures spindle stability for spindle positioning. Journal of Cell Biology, 2017, 216, 2759-2775.	5.2	9
94	Themetl mutation inChlamydomonas reinhardtii causes arrest at mitotic metaphase with persisting p34cdc2-like H 1 histone kinase activity that can promote mitosis when injected into higher-plant cells. Protoplasma, 1997, 199, 135-150.	2.1	7
95	Calcium signalling in pollen of Papaver rhoeas undergoing the self-incompatibility (SI) response. Sexual Plant Reproduction, 2001, 14, 105-110.	2.2	7
96	Apical pollen tube wall curvature correlates with growth and indicates localized changes in the yielding of the cell wall. Protoplasma, 2021, 258, 1347-1358.	2.1	7
97	Plant Microtubules. , 1976, , 147-187.		7

98 Some retrospectives on early studies of plant microtubules. Plant Journal, 2013, 75, 189-201.

| | |
| :--- | :--- | :--- |
| 99 | Intracellular pH does not change during phytochrome-mediated spore germination in Onoclea.
 Developmental Biology, 1986, 113, 97-103. |
| $100 \quad$Inositol 1,4,5 trisphosphate is inactivated by a 5-phosphatase in stamen hair cells of Tradescantia.
 Planta, 2001, 213, 518-524. | 3.0 |

