Jan Pieter Glatzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733358/publications.pdf

Version: 2024-02-01

231 papers

14,718 citations

18482 62 h-index 22166 113 g-index

243 all docs 243 docs citations

times ranked

243

13669 citing authors

#	Article	IF	CITATIONS
1	Dynamic Role of Gold $\langle i \rangle d \langle j \rangle$ -Orbitals during CO Oxidation under Aerobic Conditions. ACS Catalysis, 2022, 12, 3615-3627.	11.2	9
2	Electrochemical transformation of Fe-N-C catalysts into iron oxides in alkaline medium and its impact on the oxygen reduction reaction activity. Applied Catalysis B: Environmental, 2022, 311, 121366.	20.2	22
3	Chemical Information in the L ₃ X-ray Absorption Spectra of Molybdenum Compounds by High-Energy-Resolution Detection and Density Functional Theory. Inorganic Chemistry, 2022, 61, 869-881.	4.0	3
4	Crystal Chemistry of Thallium in Marine Ferromanganese Deposits. ACS Earth and Space Chemistry, 2022, 6, 1269-1285.	2.7	9
5	In Vivo Formation of HgSe Nanoparticles and Hg–Tetraselenolate Complex from Methylmercury in Seabirds—Implications for the Hg–Se Antagonism. Environmental Science & Technology, 2021, 55, 1515-1526.	10.0	75
6	Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in <i>Escherichia coli</i> Environmental Science & Environme	10.0	9
7	Chemical Forms of Mercury in Blue Marlin Billfish: Implications for Human Exposure. Environmental Science and Technology Letters, 2021, 8, 405-411.	8.7	21
8	On the presence of covalently bound phosphorus in amorphous Ni–Co–P and Fe–Co–P electroplates. Materials Chemistry and Physics, 2021, 272, 124987.	4.0	4
9	The five-analyzer point-to-point scanning crystal spectrometer at ESRF ID26. Journal of Synchrotron Radiation, 2021, 28, 362-371.	2.4	19
10	X-ray Dichroisms in Spherical Tensor and Green's Function Formalism. Springer Proceedings in Physics, 2021, , 83-130.	0.2	0
11	Demethylation of Methylmercury in Bird, Fish, and Earthworm. Environmental Science & Emp; Technology, 2021, 55, 1527-1534.	10.0	61
12	Atomic/molecular layer deposition of Ni-terephthalate thin films. Dalton Transactions, 2021, 50, 16133-16138.	3.3	5
13	Temperature-Driven Self-Doping in Magnetite. Physical Review Letters, 2021, 127, 186402.	7.8	7
14	Identification of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>Dy</mml:mi></mml:mrow><mml:mrow><mml 033001.<="" 125,="" 2020,="" as="" electron="" in="" letters,="" persistent="" phosphors.="" physical="" review="" td="" trap=""><td>ıl:n7178>3<td>nnd#mn><mr< td=""></mr<></td></td></mml></mml:mrow></mml:msup></mml:mrow></mml:math>	ıl:n 7 178>3 <td>nnd#mn><mr< td=""></mr<></td>	nnd#mn> <mr< td=""></mr<>
15	New reflections on hard X-ray photon-in/photon-out spectroscopy. Nanoscale, 2020, 12, 16270-16284.	5.6	21
16	Damages Induced by Synchrotron Radiation-Based X-ray Microanalysis in Chrome Yellow Paints and Related Cr-Compounds: Assessment, Quantification, and Mitigation Strategies. Analytical Chemistry, 2020, 92, 14164-14173.	6.5	22
17	Chemical Sensitivity of $\hat{Kl^2}$ and $\hat{Kl\pm}$ X-ray Emission from a Systematic Investigation of Iron Compounds. Inorganic Chemistry, 2020, 59, 12518-12535.	4.0	55
18	TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers. Journal of Synchrotron Radiation, 2020, 27, 813-826.	2.4	19

#	Article	IF	CITATIONS
19	The Mode of Incorporation of As(-I) and Se(-I) in Natural Pyrite Revisited. ACS Earth and Space Chemistry, 2020, 4, 379-390.	2.7	18
20	HERFD-XANES probes of electronic structures of iron < sup > II/III < / sup > carbene complexes. Physical Chemistry Chemical Physics, 2020, 22, 9067-9073.	2.8	6
21	More than protection: the function of TiO ₂ interlayers in hematite functionalized Si photoanodes. Physical Chemistry Chemical Physics, 2020, 22, 28459-28467.	2.8	3
22	Energy and Environmental Science at ESRF. Synchrotron Radiation News, 2020, 33, 40-51.	0.8	3
23	Evidence for syngenetic micro-inclusions of As3+- and As5+-containing Cu sulfides in hydrothermal pyrite. American Mineralogist, 2019, 104, 300-306.	1.9	4
24	Revealing the Chemical Form of "Invisible―Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X-ray Absorption Spectroscopy. ACS Earth and Space Chemistry, 2019, 3, 1905-1914.	2.7	39
25	Noncollinear Ordering of the Orbital Magnetic Moments in Magnetite. Physical Review Letters, 2019, 123, 207201.	7.8	10
26	Frontispiece: Mercury(II) Binding to Metallothionein in Mytilus edulis revealed by High Energy-Resolution XANES Spectroscopy. Chemistry - A European Journal, 2019, 25, .	3.3	0
27	Divalent Mercury in Dissolved Organic Matter Is Bioavailable to Fish and Accumulates as Dithiolate and Tetrathiolate Complexes. Environmental Science & Environmental Science	10.0	30
28	Resonant inelastic X-ray scattering determination of the electronic structure of oxyhemoglobin and its model complex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2854-2859.	7.1	28
29	A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Dalton Transactions, 2019, 48, 1166-1170.	3.3	6
30	XAFS17 Highlights XAS and Related Techniques. Synchrotron Radiation News, 2019, 32, 15-17.	0.8	2
31	Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO ₂ and Pt/Al ₂ O ₃ by Spatially Resolved Structure–Activity Correlations. Journal of Physical Chemistry Letters, 2019, 10, 7698-7705.	4.6	58
32	Mercury(II) Binding to Metallothionein in <i>Mytilus edulis</i> revealed by High Energyâ€Resolution XANES Spectroscopy. Chemistry - A European Journal, 2019, 25, 997-1009.	3.3	23
33	Measurement of f orbital hybridization in rare earths through electric dipole-octupole interference in x-ray absorption spectroscopy. Physical Review Materials, 2019, 3, .	2.4	5
34	Resonant Inelastic X-ray Scattering at the ESRF: An Evolving Portfolio for Hard and Soft X-rays. Synchrotron Radiation News, 2018, 31, 26-30.	0.8	5
35	Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions: Operando X-ray absorption and emission spectroscopy investigation. Applied Catalysis B: Environmental, 2018, 232, 409-419.	20.2	87
36	Biogenesis of Mercury–Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environmental Science & Dechnology, 2018, 52, 3935-3948.	10.0	75

#	Article	IF	Citations
37	Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochimica Et Cosmochimica Acta, 2018, 220, 1-18.	3.9	28
38	Application of valence-to-core X-ray emission spectroscopy for identification and estimation of amount of carbon covalently bonded to chromium in amorphous Cr-C coatings prepared by magnetron sputtering. Applied Surface Science, 2018, 427, 566-572.	6.1	6
39	Single Au Atom Doping of Silver Nanoclusters. ACS Nano, 2018, 12, 12751-12760.	14.6	74
40	Insights into the Synthesis Mechanism of Ag ₂₉ Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 28351-28361.	3.1	22
41	The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Journal of the American Chemical Society, 2018, 140, 15270-15278.	13.7	177
42	Photo-electrochemical hydrogen production from neutral phosphate buffer and seawater using micro-structured p-Si photo-electrodes functionalized by solution-based methods. Sustainable Energy and Fuels, 2018, 2, 2215-2223.	4.9	14
43	Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings. Environmental Science & Environmenta	10.0	37
44	Improving the quality of XAFS data. Journal of Synchrotron Radiation, 2018, 25, 972-980.	2.4	29
45	Synergistic interplay of Zn and Rh-Cr promoters on Ga2O3 based photocatalysts for water splitting. Physical Chemistry Chemical Physics, 2018, 20, 23515-23521.	2.8	5
46	High energy-resolution x-ray spectroscopy at ultra-high dilution with spherically bent crystal analyzers of 0.5 m radius. Review of Scientific Instruments, 2017, 88, 013108.	1.3	62
47	Influence of the nature and environment of manganese in Mn-BEA zeolites on NO conversion in selective catalytic reduction with ammonia. Physical Chemistry Chemical Physics, 2017, 19, 13553-13561.	2.8	6
48	Evidence of Mott physics in iron pnictides from x-ray spectroscopy. Physical Review B, 2017, 96, .	3.2	24
49	Oxidation and Luminescence Quenching of Europium in BaMgAl ₁₀ O ₁₇ Blue Phosphors. Chemistry of Materials, 2017, 29, 10122-10129.	6.7	41
50	Long-range interactions in the effective low-energy Hamiltonian of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="bold">Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="bold">IrO</mml:mi><mml:mi><mml:mn>4</mml:mn></mml:mi></mml:msub></mml:mrow></mml:math> : A	3.2	18
51	core-to-core resonant inelastic x-ray scattering study. Physical Review B, 2017, 95, . Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSMâ€5 as Revealed by Operando Xâ€Ray Methods. Angewandte Chemie, 2016, 128, 5301-5305.	2.0	37
52	Element substitution by living organisms: the case of manganese in mollusc shell aragonite. Scientific Reports, 2016, 6, 22514.	3.3	42
53	Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSMâ€5 as Revealed by Operando Xâ€Ray Methods. Angewandte Chemie - International Edition, 2016, 55, 5215-5219.	13.8	133
54	Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure. Environmental Science & Emp; Technology, 2016, 50, 10721-10729.	10.0	53

#	Article	IF	CITATIONS
55	Intramolecular Hgâ√ï€ interactions of d-character with non-bridging atoms in mercury–aryl complexes. Dalton Transactions, 2016, 45, 14035-14038.	3.3	9
56	X-ray magnetic circular dichroism measured at the FeK-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements. Journal of Physics Condensed Matter, 2016, 28, 505202.	1.8	3
57	xmins:mml="http://www.w3.org/1998/Math/Math/Math/Mith> <mml:ml>K</mml:ml> K/mml:math>-edge x-ray emission and absorption spectroscopy study of the electronic and local structure of the three different phases in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi< td=""><td>3.2</td><td>24</td></mml:mi<></mml:mrow></mml:math 	3.2	24
58	Benchtop Nonresonant X-ray Emission Spectroscopy: Coming Soon to Laboratories and XAS Beamlines Near You?. Journal of Physics: Conference Series, 2016, 712, 012036.	0.4	24
59	Electronic properties of epitaxial cerium oxide films during controlled reduction and oxidation studied by resonant inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2016, 18, 20511-20517.	2.8	24
60	Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering. Journal of Physical Chemistry B, 2016, 120, 1158-1168.	2.6	85
61	Spectroscopic properties of \frac{Cr}^{3+} Cr 3 + in the spinel solid solution $\frac{5}{0}$ Minerals, 2016, {ZnAl}_{2-x}hbox {Cr}_{x}hbox {O}_4\$\$ ZnAl 2 - x Cr x O 4. Physics and Chemistry of Minerals, 2016, 43, 33-42.	0.8	16
62	Incorporation of Mn in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Al</mml:mi><mml:mathvariant="normal">N</mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> probed by x-ray absorption and emission spectroscopy, high-resolution microscopy, x-ray diffraction, and first-principles calculations.	ni>x3.2	:mi>2
63	Physical Review B, 2015, 92, . Experimental evidence of Xe incorporation in Schottky defects in UO2. Applied Physics Letters, 2015, 106, .	3.3	25
64	High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15803-15808.	7.1	46
65	Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations. Inorganic Chemistry, 2015, 54, 11776-11791.	4.0	57
66	Resonant Inelastic X-ray Scattering of Molybdenum Oxides and Sulfides. Journal of Physical Chemistry C, 2015, 119, 2419-2426.	3.1	18
67	XAS and XES Techniques Shed Light on the Dark Side of Ziegler–Natta Catalysts: Active‧ite Generation. ChemCatChem, 2015, 7, 1432-1437.	3.7	31
68	Probing Longâ€Lived Plasmonicâ€Generated Charges in TiO ₂ /Au by Highâ€Resolution Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 5413-5416.	13.8	67
69	Chemical state of phosphorus in amorphous Ni–Fe–P electroplates. Surface and Coatings Technology, 2015, 275, 239-244.	4.8	17
70	Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) ₂] ²⁺ . Journal of Physical Chemistry C, 2015, 119, 5888-5902.	3.1	72
71	Spatial imaging of carbon reactivity centers in Pd/C catalytic systems. Chemical Science, 2015, 6, 3302-3313.	7.4	49
72	Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chemical Communications, 2015, 51, 9227-9230.	4.1	101

#	Article	IF	Citations
73	Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO2. Journal of Nuclear Materials, 2015, 466, 379-392.	2.7	22
74	Formation of Mercury Sulfide from Hg(II)–Thiolate Complexes in Natural Organic Matter. Environmental Science & Environmenta	10.0	111
75	Hard x-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors. Semiconductor Science and Technology, 2014, 29, 023002.	2.0	60
76	Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nature Methods, 2014, 11, 545-548.	19.0	140
77	Programmed Iron Oxide Nanoparticles Disintegration in Anaerobic Digesters Boosts Biogas Production. Small, 2014, 10, 2801-2808.	10.0	153
78	Crystal-field excitations in NiO under high pressure studied by resonant inelastic x-ray scattering. Journal of Physics Condensed Matter, 2014, 26, 135501.	1.8	2
79	Identification of a spin-coupled Mo(<scp>iii</scp>) in the nitrogenase iron–molybdenum cofactor. Chemical Science, 2014, 5, 3096-3103.	7.4	164
80	X-ray Spectroscopic Study of Solvent Effects on the Ferrous and Ferric Hexacyanide Anions. Journal of Physical Chemistry A, 2014, 118, 9411-9418.	2.5	42
81	Architecture of the Ti(IV) Sites in TiAlPO-5 Determined Using Ti K-Edge X-ray Absorption and X-ray Emission Spectroscopies. Journal of Physical Chemistry C, 2014, 118, 11745-11751.	3.1	13
82	Site-Selective High-Resolution X-ray Absorption Spectroscopy and High-Resolution X-ray Emission Spectroscopy of Cobalt Nanoparticles. Inorganic Chemistry, 2014, 53, 8367-8375.	4.0	18
83	Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles. Nanoscale, 2014, 6, 11911-11920.	5.6	46
84	Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 2014, 5, 4371.	12.8	206
85	Valence to Core Xâ€ray Emission Spectroscopy. Advanced Materials, 2014, 26, 7730-7746.	21.0	87
86	Valence-to-Core-Detected X-ray Absorption Spectroscopy: Targeting Ligand Selectivity. Journal of the American Chemical Society, 2014, 136, 10076-10084.	13.7	37
87	The role of Hartree–Fock exchange in the simulation of X-ray absorption spectra: A study of photoexcited. Chemical Physics Letters, 2013, 580, 179-184.	2.6	43
88	Spin-polarized electronic structure of the core–shell ZnO/ZnO:Mn nanowires probed by X-ray absorption and emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2013, 28, 1629.	3.0	11
89	Absence of Ce ³⁺ Sites in Chemically Active Colloidal Ceria Nanoparticles. ACS Nano, 2013, 7, 10726-10732.	14.6	160
90	High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory. Physical Chemistry Chemical Physics, 2013, 15, 20911.	2.8	62

#	Article	IF	Citations
91	Spin-state studies with XES and RIXS: From static to ultrafast. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 166-171.	1.7	87
92	High energy resolution core-level X-ray spectroscopy for electronic and structural characterization of osmium compounds. Physical Chemistry Chemical Physics, 2013, 15, 16152.	2.8	33
93	Metal–Ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering. Journal of the American Chemical Society, 2013, 135, 17121-17134.	13.7	7 5
94	Chemical State of Complex Uranium Oxides. Physical Review Letters, 2013, 111, 253002.	7.8	212
95	Preference towards Fiveâ€Coordination in Ti Silicaliteâ€1 upon Molecular Adsorption. ChemPhysChem, 2013, 14, 79-83.	2.1	53
96	Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature. Science, 2013, 340, 491-495.	12.6	378
97	Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 17-25.	1.7	128
98	Structure Induced Yb Valence Changes in the Solid Solution YbxCa1-xC2. Inorganic Chemistry, 2013, 52, 7020-7030.	4.0	4
99	Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts. Journal of Physical Chemistry Letters, 2013, 4, 1972-1976.	4.6	49
100	Local surrounding of vanadium atoms in CuCr1 \hat{a} ° x V x S2: X-ray absorption spectroscopy analysis. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 397-400.	0.6	2
101	Silica-supported Ti chloride tetrahydrofuranates, precursors of Ziegler–Natta catalysts. Dalton Transactions, 2013, 42, 12706.	3.3	33
102	Electronic Structural Changes of Mn in the Oxygen-Evolving Complex of Photosystem II during the Catalytic Cycle. Inorganic Chemistry, 2013, 52, 5642-5644.	4.0	57
103	dd Excitations in CPO-27-Ni Metal–Organic Framework: Comparison between Resonant Inelastic X-ray Scattering and UV–vis Spectroscopy. Inorganic Chemistry, 2013, 52, 5633-5635.	4.0	21
104	Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions ofÂtheÂsurface shape. Journal of Synchrotron Radiation, 2013, 20, 567-580.	2.4	45
105	Hard x-ray absorption spectroscopy for pulsed sources. Physical Review B, 2013, 87, .	3.2	21
106	Real Space Green's Function Approach to Resonant Inelastic X-Ray Scattering and HERFD XAS. Journal of Physics: Conference Series, 2013, 430, 012003.	0.4	2
107	Thermal distortion minimization by geometry optimization for water-cooled white beam mirror or multilayer optics. Journal of Physics: Conference Series, 2013, 425, 052029.	0.4	18
108	Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19103-19107.	7.1	113

#	Article	IF	CITATIONS
109	Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1584-1587.	2.5	167
110	1s2p resonant inelastic x-ray scattering-magnetic circular dichroism: A sensitive probe of 3d magnetic moments using hard x-ray photons. Journal of Applied Physics, 2012, 111, 07E301.	2.5	16
111	Fifteenth International Conference on X-ray Absorption Fine Structure. Synchrotron Radiation News, 2012, 25, 3-3.	0.8	0
112	Spectroscopic and adsorptive studies of a thermally robust pyrazolato-based PCP. Dalton Transactions, 2012, 41, 4012.	3.3	25
113	HERFD XAS/ATR-FTIR batch reactor cell. Physical Chemistry Chemical Physics, 2012, 14, 2164-2170.	2.8	29
114	Spectator and participator processes in the resonant photon-in and photon-out spectra at the Ce L3 edge of CeO2. European Physical Journal B, 2012, 85, 1.	1.5	33
115	Manipulating Mn–Mgk cation complexes to control the charge- and spin-state of Mn in GaN. Scientific Reports, 2012, 2, 722.	3.3	43
116	A tool to plan photon-in/photon-out experiments: count rates, dips and self-absorption. Journal of Synchrotron Radiation, 2012, 19, 911-919.	2.4	22
117	Resonant X-ray emission spectroscopy reveals d–d ligand-field states involved in the self-assembly of a square-planar platinum complex. Physical Chemistry Chemical Physics, 2012, 14, 15278.	2.8	14
118	Intrinsic deviations in fluorescence yield detected x-ray absorption spectroscopy: the case of the transition metal L _{2,3} edges. Journal of Physics Condensed Matter, 2012, 24, 452201.	1.8	47
119	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub>L<mml:mn>3</mml:mn></mml:msub> X-Ray Absorption Spectra of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub></mml:msub></mml:math> :	7.8	21
120	Resolution of a Recent Controversy. Physical Review Letters, 2012, 108, 036403. Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. American Mineralogist, 2012, 97, 468-475.	1.9	55
121	Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9721-9726.	7.1	144
122	Study of N-bridged diiron phthalocyanine relevant to methane oxidation: Insight into oxidation and spin states from high resolution 1s core hole X-ray spectroscopy. Applied Catalysis B: Environmental, 2012, 113-114, 43-51.	20.2	18
123	Yb Valence States in YbC ₂ : A HERFD-XANES Spectroscopic Investigation. Inorganic Chemistry, 2011, 50, 5587-5595.	4.0	13
124	Real-space Green's function approach to resonant inelastic x-ray scattering. Physical Review B, 2011, 83,	3.2	34
125	Manganese Kβ X-ray Emission Spectroscopy As a Probe of Metal–Ligand Interactions. Inorganic Chemistry, 2011, 50, 8397-8409.	4.0	118
126	Direct study of the f-electron configuration in lanthanide systems. Journal of Analytical Atomic Spectrometry, 2011, 26, 1265.	3.0	61

#	Article	IF	Citations
127	Investigation of the valence electronic states of Ti(iv) in Ti silicalite-1 coupling X-ray emission spectroscopy and density functional calculations. Physical Chemistry Chemical Physics, 2011, 13, 19409.	2.8	46
128	V oxidation state in Fe–Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Physics and Chemistry of Minerals, 2011, 38, 449-458.	0.8	65
129	A new method of directly determining the core–hole effect in the Ce L3 XAS of mixed valence Ce compounds—An application of resonant X-ray emission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 210-215.	1.7	38
130	Spin-orbit sensitive hard x-ray probe of the occupied and unoccupied <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>5</mml:mn><mml:mi>d</mml:mi></mml:mrow></mml:math> density of states. Physical Review B, 2011, 84, .	3.2	25
131	Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector. Review of Scientific Instruments, 2011, 82, 065107.	1.3	93
132	Mechanical aspects of the ID26 emission spectrometer II: improving stability for a large instrument by the use of multiple air pad supports. Diamond Light Source Proceedings, 2010, 1, .	0.1	1
133	Elucidation of the chemical state of phosphorus and boron in crystallographically amorphous nickel electroplates. Russian Journal of Electrochemistry, 2010, 46, 1223-1229.	0.9	8
134	A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. Journal of Catalysis, 2010, 276, 268-279.	6.2	256
135	Direct Detection of Oxygen Ligation to the Mn ₄ Ca Cluster of Photosystem II by Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 800-803.	13.8	78
136	Picosecond Timeâ€Resolved Xâ€Ray Emission Spectroscopy: Ultrafast Spinâ€State Determination in an Iron Complex. Angewandte Chemie - International Edition, 2010, 49, 5910-5912.	13.8	99
137	Chemical composition and structural transformations of amorphous chromium coatings electrodeposited from Cr(III) electrolytes. Electrochimica Acta, 2010, 56, 145-153.	5.2	61
138	Continuous Flow Cryostat for X-Ray Fluorescence. , 2010, , .		2
139	Electronic structure and local environment of substitutional V3+ in grossular garnet Ca3Al2(SiO4)3: K-edge X-ray absorption spectroscopy and first-principles modeling. American Mineralogist, 2010, 95, 1161-1171.	1.9	20
140	Hard x-ray probe to study doping-dependent electron redistribution and strong covalency in La1 \hat{a} °xSr1+xMnO4. Physical Review B, 2010, 82, .	3.2	24
141	Strong <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> -edge Magnetic Circular Dichroism Observed in Photon-inâ€"Photon-out Spectroscopy. Physical Review Letters, 2010, 105, 037202.	7.8	39
142	Ligand Identification in Titanium Complexes Using X-ray Valence-to-Core Emission Spectroscopy. Inorganic Chemistry, 2010, 49, 8323-8332.	4.0	48
143	Electronic structure changes in cobalt phthalocyanine due to nanotube encapsulation probed using resonant inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2010, 12, 9693.	2.8	27
144	In Situ Characterization of the 5d Density of States of Pt Nanoparticles upon Adsorption of CO. Journal of the American Chemical Society, 2010, 132, 2555-2557.	13.7	111

#	Article	IF	CITATIONS
145	Sulfur-Metal Orbital Hybridization in Sulfur-Bearing Compounds Studied by X-ray Emission Spectroscopy. Inorganic Chemistry, 2010, 49, 6468-6473.	4.0	56
146	Separation of Two-Electron Photoexcited Atomic Processes near the Inner-Shell Threshold. Physical Review Letters, 2009, 102, 143001.	7.8	32
147	Spin-Orbit Mediated Interference in the Radiative and Nonradiative Channels of the La <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn><mml:mi>d</mml:mi></mml:math> Core Resonances. Physical Review Letters. 2009. 103. 137401.	7.8	13
148	Hard X-ray Photon-In Photon-Out Spectroscopy. Synchrotron Radiation News, 2009, 22, 12-16.	0.8	29
149	The 1s x-ray absorption pre-edge structures in transition metal oxides. Journal of Physics Condensed Matter, 2009, 21, 104207.	1.8	231
150	X-ray emission spectroscopy. Photosynthesis Research, 2009, 102, 255-266.	2.9	197
151	Hard X-ray photon-in photon-out spectroscopy. Catalysis Today, 2009, 145, 294-299.	4.4	112
152	Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy. Catalysis Today, 2009, 145, 267-278.	4.4	85
153	In situ XAS with high-energy resolution: The changing structure of platinum during the oxidation of carbon monoxide. Catalysis Today, 2009, 145, 300-306.	4.4	29
154	Resonant X-ray spectroscopy to study K absorption pre-edges in 3d transition metal compounds. European Physical Journal: Special Topics, 2009, 169, 207-214.	2.6	70
155	High Energy Resolution X-ray Absorption Spectroscopy of Environmentally Relevant Lead(II) Compounds. Inorganic Chemistry, 2009, 48, 10748-10756.	4.0	43
156	Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry, 2009, 81, 6516-6525.	6.5	93
157	Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane. Journal of Physical Chemistry C, 2009, 113, 3037-3040.	3.1	60
158	X-ray Emission Spectroscopy To Study Ligand Valence Orbitals in Mn Coordination Complexes. Journal of the American Chemical Society, 2009, 131, 13161-13167.	13.7	135
159	The electronic structure in 3d transition metal complexes: Can we measure oxidation states?. Journal of Physics: Conference Series, 2009, 190, 012046.	0.4	38
160	Cr local environment by valence-to-core X-ray emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2009, 24, 215-223.	3.0	52
161	Resonant inelastic X-ray scattering on synthetic nickel compounds and Ni-Fe hydrogenase protein. Journal of Physics: Conference Series, 2009, 190, 012199.	0.4	4
162	Electron transfer during selenium reduction by iron surfaces in aqueous solution: High resolution X-ray absorption study. Journal of Physics: Conference Series, 2009, 190, 012191.	0.4	11

#	Article	IF	CITATIONS
163	Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al ₂ O ₃ : In Situ, Timeâ€Resolved, and Highâ€Energyâ€Resolution Xâ€Ray Absorption Spitialsybpigizationandspitipolarization in the description.	13.8	119
164	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow>photoexcit of<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>/="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>/=</mml:mi>/=</mml:mrow></mml:mi>/=a^^<mml:msub><mml:mi< td=""><td>ations 3.2</td><td>54</td></mml:mi<></mml:msub></mml:mrow></mml:math></mml:mrow>	ations 3.2	54
165	mathyariant="normal">Fe <mml:mn>?</mml:mn> <mml:msub><mml:mi at="" crystal-field="" display="inline" excitations="" hard="" in="" inelastic="" nio="" resonant="" scattering="" studied="" the<mill:math="" with="" x-ray="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext><mml:mtext>Ni</mml:mtext><mml:mtext> </mml:mtext><mml:mi>K</mml:mi><td>>3:/2mml:rr</td><td>nrow></td></mml:mtext></mml:mi></mml:msub>	> 3:/2 mml:rr	nrow>
166	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msup><mml:mrow><mml:mtext>Cr</mml:mtext></mml:mrow><mml:mrow> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>MgAl</mml:mtext></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msup></mml:mrow>	0.2	30
167	Physical Review B, 2008, 78, . Geometric and Electronic Structure of α-Oxygen Sites in Mn-ZSM-5 Zeolites. Journal of Physical Chemistry C, 2008, 112, 12409-12416.	3.1	26
168	The determination of Ti ₂ O ₃ in titania slags: a comparison of different methods of analysis. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2008, 117, 166-170.	0.6	1
169	High-resolution structure of the photosynthetic Mn ₄ Ca catalyst from X-ray spectroscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1139-1147.	4.0	42
170	Evolution of charge and spin state of transition metals in the LaMn1â^'xCoxO3 perovskite series. Journal of Applied Physics, 2008, 103, 07C907.	2.5	26
171	Structure of the Photosynthetic Mn4Ca Cluster Using X-ray Spectroscopy. , 2008, , 533-538.		0
172	Electronic Structure and Oxidation State Changes in the Mn4Ca Cluster of Photosystem II., 2008, , 529-532.		0
173	Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure. Journal of Chemical Physics, 2007, 127, 174504.	3.0	118
174	Structure and Orientation of the Mn4Ca Cluster in Plant Photosystem II Membranes Studied by Polarized Range-extended X-ray Absorption Spectroscopy*. Journal of Biological Chemistry, 2007, 282, 7198-7208.	3.4	91
175	Hard X-Ray Photon-In-Photon-Out Spectroscopy with Lifetime Resolution — of XAS, XES, RIXSS and HERFD. AIP Conference Proceedings, 2007, , .	0.4	4
176	Anions relative location in the group-V sublattice of GaAsSbNâ-GaAsepilayers: XAFS measurements and simulations. Physical Review B, 2007, 75, .	3.2	21
177	Mn and Fe ions and oxo clusters in ZSM-5: pushing the limits of X-ray spectroscopy. Studies in Surface Science and Catalysis, 2007, , 796-799.	1.5	3
178	High Energy Resolution Fluorescence Detection X-Ray Absorption Spectroscopy: Detection of Adsorption Sites in Supported Metal Catalysts. AIP Conference Proceedings, 2007, , .	0.4	8
179	Polarized Range-Extended X-Ray Absorption Spectroscopy of Oriented Photosystem II Membranes in the S1 State. AIP Conference Proceedings, 2007, , .	0.4	O
180	High-Throughput Structure/Function Screening of Materials and Catalysts with Multiple Spectroscopic Techniques. AIP Conference Proceedings, 2007, , .	0.4	3

#	Article	IF	CITATIONS
181	Electronic Structure of the Mn4Ca Cluster in the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-Ray Scattering. AIP Conference Proceedings, 2007, , .	0.4	O
182	Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of \hat{l}_{\pm} -Fe2O3. AIP Conference Proceedings, 2007, , .	0.4	1
183	Application of In-Situ High Energy-Resolution Fluorescence Detection and Time-Resolved X-Ray Spectroscopy: Catalytic Activation of Oxygen over Supported Gold Catalysts. AIP Conference Proceedings, 2007, , .	0.4	0
184	Valence-to-Core X-Ray Emission Spectroscopy as a Tool for Investigation of Organometallic Systems. AIP Conference Proceedings, 2007, , .	0.4	0
185	The nature of the active site in the Fe-ZSM-5/N2O system studied by (resonant) inelastic X-ray scattering. Catalysis Today, 2007, 126, 127-134.	4.4	49
186	The oxidation state of vanadium in titanomagnetite from layered basic intrusions. American Mineralogist, 2006, 91, 953-956.	1.9	61
187	On the Presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-xUnequivocal Detection of the 3d4Spin System by Resonant Inelastic X-ray Scattering. Journal of Physical Chemistry B, 2006, 110, 18104-18107.	2.6	36
188	Valence-to-Core X-ray Emission Spectroscopy Identification of Carbide Compounds in Nanocrystalline Cr Coatings Deposited from Cr(III) Electrolytes Containing Organic Substances. Journal of Physical Chemistry B, 2006, 110, 23192-23196.	2.6	104
189	Unusual Coordination Behavior of Cr3+in Microporous Aluminophosphates. Journal of Physical Chemistry B, 2006, 110, 716-722.	2.6	37
190	Identification of CO Adsorption Sites in Supported Pt Catalysts Using High-Energy-Resolution Fluorescence Detection X-ray Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 16162-16164.	2.6	163
191	Activation of Oxygen on Gold/Alumina Catalysts: In Situ High-Energy-Resolution Fluorescence and Time-Resolved X-ray Spectroscopy. Angewandte Chemie - International Edition, 2006, 45, 4651-4654.	13.8	208
192	Resonant inelastic X-ray scattering (RIXS) spectroscopy at the Mn K absorption pre-edge—a direct probe of the 3d orbitals. Journal of Physics and Chemistry of Solids, 2005, 66, 2163-2167.	4.0	31
193	High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information. Coordination Chemistry Reviews, 2005, 249, 65-95.	18.8	830
194	Comment on "Energetics of Hydrogen Bond Network Rearrangements in Liquid Water". Science, 2005, 308, 793a-793a.	12.6	90
195	A Study of Transition Metal K Absorption PreEdges by Resonant Inelastic XRay Scattering RIXS. Physica Scripta, 2005, , 1032.	2.5	7
196	Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. Journal of Chemical Physics, 2005, 123, 154503.	3.0	79
197	X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12047-12052.	7.1	585
198	High-Resolution Mn EXAFS of the Oxygen-Evolving Complex in Photosystem II:Â Structural Implications for the Mn4Ca Cluster. Journal of the American Chemical Society, 2005, 127, 14974-14975.	13.7	189

#	Article	IF	CITATIONS
199	1s2p Resonant Inelastic X-ray Scattering of Iron Oxides. Journal of Physical Chemistry B, 2005, 109, 20751-20762.	2.6	108
200	Range-extended EXAFS at theLedge of rare earths using high-energy-resolution fluorescence detection: A study of La in LaOCl. Physical Review B, 2005, 72, .	3.2	49
201	Biotic and abiotic products of Mn(II) oxidation by spores of the marineBacillus sp.strain SG-1. American Mineralogist, 2005, 90, 143-154.	1.9	237
202	X-Ray Raman Spectroscopy—A New Tool to Study Local Structure of Aromatic Hydrocarbons and Asphaltenes. Petroleum Science and Technology, 2004, 22, 863-875.	1.5	25
203	In situ X-Ray Absorption of Co/Mn/TiO2 Catalysts for Fischerâ€"Tropsch Synthesis ChemInform, 2004, 35, no.	0.0	2
204	In Situ X-ray Absorption of Co/Mn/TiO2Catalysts for Fischerâ^'Tropsch Synthesis. Journal of Physical Chemistry B, 2004, 108, 16201-16207.	2.6	165
205	Mn oxidation states in tri- and tetra-nuclear Mn compounds structurally relevant to photosystem II: Mn K-edge X-ray absorption and K? X-ray emission spectroscopy studies. Physical Chemistry Chemical Physics, 2004, 6, 4864.	2.8	35
206	$\hat{Kl^2}$ -Detected XANES of Framework-Substituted FeZSM-5 Zeolites. Journal of Physical Chemistry B, 2004, 108, 10002-10011.	2.6	77
207	The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering. Journal of the American Chemical Society, 2004, 126, 9946-9959.	13.7	177
208	The Structure of the First Coordination Shell in Liquid Water. Science, 2004, 304, 995-999.	12.6	1,287
209	Inner-Shell Excitation Spectroscopy of Fused-Ring Aromatic Molecules by Electron Energy Loss and X-ray Raman Techniques. Journal of Physical Chemistry A, 2003, 107, 8512-8520.	2.5	42
210	Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chemical Physics Letters, 2003, 369, 184-191.	2.6	85
211	High-resolution X-ray imaging based on curved Bragg mirrors: first results. IEEE Transactions on Nuclear Science, 2003, 50, 140-145.	2.0	2
212	Multiple excitations in the K fluorescence emission of Mn, Fe and Ni compounds. AIP Conference Proceedings, 2003, , .	0.4	10
213	X-ray Raman spectroscopy at the oxygenKedge of water and ice: Implications on local structure models. Physical Review B, 2002, 66, .	3.2	101
214	Anisotropic valenceâ†'core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]â«H2O single crystal: Experimental results and density functional calculations. Journal of Chemical Physics, 2002, 116, 2011-2015.	3.0	38
215	Electronic Structure of Ni Complexes by X-ray Resonance Raman Spectroscopy (Resonant Inelastic) Tj ETQq $1\ 1$	0.784314 i 13.7	rgBT ₃₁ /Overloc
216	Site-Selective EXAFS in Mixed-Valence Compounds Using High-Resolution Fluorescence Detection:  A Study of Iron in Prussian Blue. Inorganic Chemistry, 2002, 41, 3121-3127.	4.0	95

#	Article	IF	CITATIONS
217	Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchemical Journal, 2002, 71, 221-230.	4.5	141
218	Absence of Mn-Centered Oxidation in the S2â†' S3Transition: Implications for the Mechanism of Photosynthetic Water Oxidation. Journal of the American Chemical Society, 2001, 123, 7804-7820.	13.7	295
219	Mn K-Edge XANES and $\hat{Kl^2}$ XES Studies of Two Mnâ^'Oxo Binuclear Complexes:Â Investigation of Three Different Oxidation States Relevant to the Oxygen-Evolving Complex of Photosystem II. Journal of the American Chemical Society, 2001, 123, 7031-7039.	13.7	94
220	High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry. Journal of Synchrotron Radiation, 2001, 8, 199-203.	2.4	45
221	Multiplet splitting and valence-shell recoupling in the core-level2pphotoelectron spectrum of atomic Mn and of Mn compounds. Physical Review A, 2001, 63, .	2.5	30
222	Influence of the core hole onk \hat{l}^2 emission following photoionization or orbital electron capture: A comparison using MnO and 55Fe2O3. Physical Review B, 2001, 64, .	3.2	49
223	Resonant 3p photoelectron spectroscopy of free Cu atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 1563-1573.	1.5	6
224	vuv photoionization of uv-laser-tailored Ni-like Cu3d9atoms. Physical Review A, 1999, 60, R737-R740.	2.5	6
225	High resolution spectroscopy of 2p6→2p53d resonantly excited atomic Ca. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 39-42.	1.7	7
226	High Resolution K Capture X-ray Fluorescence Spectroscopy:Â A New Tool for Chemical Characterization. Journal of the American Chemical Society, 1999, 121, 4926-4927.	13.7	29
227	Determination of Ca 2p ionization thresholds by high-resolution photoelectron spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L289-L296.	1.5	5
228	Valence satellite and 3p photoelectron spectra of atomic Fe and Cu. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 2539-2547.	1.5	22
229	Refined Model of the Oxidation States and Structures of the Mn/Ca/Cl Cluster of the Oxygen Evolving Complex of Photosystem II., 1998, , 1273-1278.		3
230	Oxidation States and Structure of the Manganese Cluster in the SO State of the Oxygen Evolving Complex., 1998,, 1279-1282.		9
231	High-resolution x-ray imaging using Rowland-circle Bragg optics. , 0, , .		0