Martin Knapmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7333452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	12.9	274
2	The landing(s) of Philae and inferences about comet surface mechanical properties. Science, 2015, 349, aaa9816.	12.6	212
3	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	12.9	207
4	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	12.9	194
5	Seismic detection of the martian core. Science, 2021, 373, 443-448.	12.6	169
6	Working models for spatial distribution and level of Mars' seismicity. Journal of Geophysical Research, 2006, 111, .	3.3	149
7	Thickness and structure of the martian crust from InSight seismic data. Science, 2021, 373, 438-443.	12.6	140
8	Long-Term Evolution of the Martian Crust-Mantle System. Space Science Reviews, 2013, 174, 49-111.	8.1	124
9	Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu. Nature Astronomy, 2019, 3, 971-976.	10.1	124
10	Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 2012, 74, 15-41.	1.7	104
11	Imaging crustal discontinuities and the downgoing slab beneath western Crete. Geophysical Journal International, 2000, 143, 1-21.	2.4	100
12	Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Science Reviews, 2017, 211, 611-650.	8.1	80
13	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
14	Detection, Analysis, and Removal of Glitches From InSight's Seismic Data From Mars. Earth and Space Science, 2020, 7, e2020EA001317.	2.6	75
15	The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta. Space Science Reviews, 2019, 215, 1.	8.1	61
16	Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Physics of the Earth and Planetary Interiors, 2016, 258, 28-42.	1.9	56
17	The Philae lander mission and science overview. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160248.	3.4	53
18	Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy, 2012, 33, 529-585.	3.7	52

MARTIN KNAPMEYER

#	Article	IF	CITATIONS
19	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	8.1	41
20	Highâ€Frequency Seismic Events on Mars Observed by InSight. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006670.	3.6	40
21	Presentâ€Day Mars' Seismicity Predicted From 3â€D Thermal Evolution Models of Interior Dynamics. Geophysical Research Letters, 2018, 45, 2580-2589.	4.0	35
22	Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planetary and Space Science, 2012, 68, 123-145.	1.7	32
23	Analysis of Regolith Properties Using Seismic Signals Generated by InSight's HP3 Penetrator. Space Science Reviews, 2017, 211, 315-337.	8.1	31
24	The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2022, 2, 88-99.	3.1	29
25	Structure and elastic parameters of the near surface of Abydos site on comet 67P/Churyumov–Gerasimenko, as obtained by SESAME/CASSE listening to the MUPUS insertion phase. Icarus, 2018, 310, 165-193.	2.5	28
26	Magnitude Scales for Marsquakes Calibrated from InSight Data. Bulletin of the Seismological Society of America, 2021, 111, 3003-3015.	2.3	25
27	TTBox: A MatLab Toolbox for the Computation of 1D Teleseismic Travel Times. Seismological Research Letters, 2004, 75, 726-733.	1.9	24
28	Thermal fracturing on comets. Astronomy and Astrophysics, 2018, 610, A76.	5.1	24
29	Re-evaluation of Apollo 17 Lunar Seismic Profiling Experiment data. Planetary and Space Science, 2017, 135, 43-54.	1.7	23
30	LunarEX—a proposal to cosmic vision. Experimental Astronomy, 2009, 23, 711-740.	3.7	18
31	Constraining models of activity on comet 67P/Churyumov-Gerasimenko with Rosetta trajectory, rotation, and water production measurements. Astronomy and Astrophysics, 2019, 630, A18.	5.1	18
32	Rosetta Lander - Philae: Operations on comet 67P/Churyumov-Gerasimenko, analysis of wake-up activities and final state. Acta Astronautica, 2017, 137, 38-43.	3.2	16
33	Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	3.7	15
34	The SESAME/CASSE instrument listening to the MUPUS PEN insertion phase on comet 67P/Churyumov–Gerasimenko. Acta Astronautica, 2016, 125, 234-249.	3.2	14
35	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	4.4	13
36	Influence of Body Waves, Instrumentation Resonances, and Prior Assumptions on Rayleigh Wave Ellipticity Inversion for Shallow Structure at the InSight Landing Site. Space Science Reviews, 2018, 214, 1.	8.1	10

MARTIN KNAPMEYER

#	Article	IF	CITATIONS
37	Seismic Velocity Variations in a 3D Martian Mantle: Implications for the InSight Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006755.	3.6	10
38	Compressive strength and elastic modulus at Agilkia on comet 67P/Churyumov-Gerasimenko derived from the SESAME/CASSE touchdown signals. Icarus, 2018, 303, 251-264.	2.5	9
39	A method for inverting the touchdown shock of the Philae lander on comet 67P/Churyumov-Gerasimenko. Planetary and Space Science, 2015, 106, 46-55.	1.7	8
40	A seismic-network mission proposal as an example for modular robotic lunar exploration missions. Acta Astronautica, 2017, 134, 121-132.	3.2	8
41	Location of seismic events using inaccurate data from very sparse networks. Geophysical Journal International, 2008, 175, 975-991.	2.4	7
42	Planetary core size: A seismological approach. Planetary and Space Science, 2011, 59, 1062-1068.	1.7	7
43	Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars. Bulletin of the Seismological Society of America, 2019, 109, 1125-1147.	2.3	7
44	Re-evaluation of Apollo 17 Lunar Seismic Profiling Experiment data including new LROC-derived coordinates for explosive packages 1 and 7, at Taurus-Littrow, Moon. Planetary and Space Science, 2021, 206, 105307.	1.7	7
45	The Lunar Geophysical Network Landing Sites Science Rationale. Planetary Science Journal, 2022, 3, 40.	3.6	7
46	Numerical Accuracy of Travel-time Software in Comparison with Analytic Results. Seismological Research Letters, 2005, 76, 74-81.	1.9	6
47	Uncertainty of Apollo deep moonquake locations and implications for future network designs. Icarus, 2012, 220, 971-980.	2.5	5
48	A robotically deployable lunar surface science station and its validation in a Moon-analogue environment. Planetary and Space Science, 2020, 193, 105080.	1.7	5
49	Modeling approaches in planetary seismology. , 2015, , 140-156.		4
50	Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012, , 49-111.	0.0	4
51	Surface mechanical properties of comet 67P. Japanese Journal of Applied Physics, 2019, 58, SG0801.	1.5	2
52	An autonomous lunar geophysical experiment package (ALGEP) for future space missions. Experimental Astronomy, 2022, 54, 617-640.	3.7	2
53	Seismicity and interior structure of the Moon. , 2015, , 203-224.		1
54	Corrigendum to "The SESAME/CASSE instrument listening to the MUPUS PEN insertion phase on comet 67P/Churyumov–Gerasimenko―[Acta Astronaut., DOI: 10.1016/j.actaastro.2016.02.018]. Acta Astronautica, 2016, 123, 227-228.	3.2	1

0

#	Article	IF	CITATIONS
55	4.2.3.3 Planetary seismology. Landolt-Bâ^šâ^,rnstein - Group VI Astronomy and Astrophysics, 2009, , 282-322.	0.1	1

56 The Network Infrastructure for the ROBEX Demomission Space. , 2018, , .