
Tiffany M Knight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Knowledge sharing for shared success in the decade on ecosystem restoration. Ecological Solutions and Evidence, 2022, 3, e12117.	2.0	18
2	Effects of climate change and pollen supplementation on the reproductive success of two grassland plant species. Ecology and Evolution, 2022, 12, e8501.	1.9	4
3	Rpadrino: An R package to access and use <scp>PADRINO</scp> , an open access database of Integral Projection Models. Methods in Ecology and Evolution, 2022, 13, 1923-1929.	5.2	4
4	The potential of multispectral imaging flow cytometry for environmental monitoring. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 782-799.	1.5	4
5	Intraspecific trait variation and reversals of trait strategies across key climate gradients in native Hawaiian plants and non-native invaders. Annals of Botany, 2021, 127, 553-564.	2.9	20
6	Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecology Letters, 2021, 24, 149-161.	6.4	66
7	A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients. Ecology, 2021, 102, e03233.	3.2	14
8	Automated conservation assessment of the orchid family with deep learning. Conservation Biology, 2021, 35, 897-908.	4.7	59
9	Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist, 2021, 229, 593-606.	7.3	42
10	Lagged and dormant season climate better predict plant vital rates than climate during the growing season. Global Change Biology, 2021, 27, 1927-1941.	9.5	24
11	Increasing temperature threatens an already endangered coastal dune plant. Ecosphere, 2021, 12, e03454.	2.2	4
12	Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity and Distributions, 2021, 27, 1120-1133.	4.1	8
13	Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time. Nature Communications, 2021, 12, 1824.	12.8	41
14	Demographic analysis of an Israeli Carpobrotus population. PLoS ONE, 2021, 16, e0250879.	2.5	8
15	The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. Journal of Animal Ecology, 2021, 90, 1398-1407.	2.8	30
16	Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nature Communications, 2021, 12, 2489.	12.8	43
17	Synthesizing tree biodiversity data to understand global patterns and processes of vegetation. Journal of Vegetation Science, 2021, 32, e13021.	2.2	17
18	Fire alters diversity, composition, and structure of dry tropical forests in the Eastern Ghats. Ecology and Evolution, 2021, 11, 6593-6603.	1.9	10

#	Article	IF	CITATIONS
19	<scp>bRacatus</scp> : A method to estimate the accuracy and biogeographical status of georeferenced biological data. Methods in Ecology and Evolution, 2021, 12, 1609-1619.	5.2	13
20	ipmr: Flexible implementation of Integral Projection Models in R. Methods in Ecology and Evolution, 2021, 12, 1826-1834.	5.2	3
21	Areas Requiring Restoration Efforts are a Complementary Opportunity to Support the Demand for Pollination Services in Brazil. Environmental Science & Technology, 2021, 55, 12043-12053.	10.0	9
22	Hawaiâ€~i forest review: Synthesizing the ecology, evolution, and conservation of a model system. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 52, 125631.	2.7	23
23	Climate change and grassland management interactively influence the population dynamics of Bromus erectus (Poaceae). Basic and Applied Ecology, 2021, 56, 226-238.	2.7	5
24	Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 2021, 7, eabd3524.	10.3	92
25	Pollinator sampling methods influence community patterns assessments by capturing species with different traits and at different abundances. Ecological Indicators, 2021, 132, 108284.	6.3	11
26	Effects of different types of lowâ€intensity management on plantâ€pollinator interactions in Estonian grasslands. Ecology and Evolution, 2021, 11, 16909-16926.	1.9	6
27	Oilseed Rape Shares Abundant and Generalized Pollinators with Its Co-Flowering Plant Species. Insects, 2021, 12, 1096.	2.2	1
28	We need more realistic climate change experiments for understanding ecosystems of the future. Global Change Biology, 2020, 26, 325-327.	9.5	65
29	Understanding plant communities of the future requires filling knowledge gaps. Global Change Biology, 2020, 26, 328-329.	9.5	4
30	Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Global Ecology and Biogeography, 2020, 29, 4-15.	5.8	43
31	Local adaptation constrains drought tolerance in a tropical foundation tree. Journal of Ecology, 2020, 108, 1540-1552.	4.0	31
32	Nonadditive effects among threats on rare plant species. Conservation Biology, 2020, 34, 1029-1034.	4.7	11
33	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	5.8	21
34	Abundance, origin, and phylogeny of plants do not predict communityâ€level patterns of pathogen diversity and infection. Ecology and Evolution, 2020, 10, 5506-5516.	1.9	5
35	Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications, 2020, 11, 3999.	12.8	84
36	Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature, 2020, 584, 238-243.	27.8	214

#	Article	IF	CITATIONS
37	Phylogenetic and functional distinctiveness explain alien plant population responses to competition. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201070.	2.6	10
38	Scaleâ€dependent impact of land management on above―and belowground biodiversity. Ecology and Evolution, 2020, 10, 10139-10149.	1.9	1
39	Diel-scale temporal dynamics in the abundance and composition of pollinators in the Arctic summer. Scientific Reports, 2020, 10, 21187.	3.3	14
40	Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecology and Evolution, 2020, 10, 13664-13672.	1.9	9
41	Temporal scaleâ€dependence of plant–pollinator networks. Oikos, 2020, 129, 1289-1302.	2.7	66
42	Temporal variation in the roles of exotic and native plant species in plant–pollinator networks. Ecosphere, 2020, 11, e02981.	2.2	9
43	Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 2020, 57, 578-589.	4.0	25
44	Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction?. American Journal of Botany, 2020, 107, 845-847.	1.7	18
45	Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16436-16441.	7.1	28
46	Longâ€ŧerm experiment manipulating community assembly results in favorable restoration outcomes for invaded prairies. Restoration Ecology, 2019, 27, 1307-1316.	2.9	8
47	We Should Know whether a Tool Works (and How Dangerous It Is) before We Use It: Response to Hinz and Colleagues. BioScience, 2019, 69, 854-855.	4.9	2
48	An invasive legume increases perennial grass biomass: An indirect pathway for plant community change. PLoS ONE, 2019, 14, e0211295.	2.5	8
49	Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic metaâ€analysis of global scale. New Phytologist, 2019, 223, 2063-2075.	7.3	20
50	Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. Scientific Reports, 2019, 9, 8086.	3.3	28
51	A framework for disentangling ecological mechanisms underlying the island species–area relationship. Frontiers of Biogeography, 2019, 11, .	1.8	46
52	Population projection models for 14 alien plant species in the presence and absence of aboveground competition. Ecology, 2019, 100, e02681.	3.2	4
53	Risks and Rewards: Assessing the Effectiveness and Safety of Classical Invasive Plant Biocontrol by Arthropods. BioScience, 2019, 69, 247-258.	4.9	31
54	Demographic amplification is a predictor of invasiveness among plants. Nature Communications, 2019, 10, 5602.	12.8	23

#	Article	IF	CITATIONS
55	Measurement of Biodiversity (MoB): A method to separate the scaleâ€dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution, 2019, 10, 258-269.	5.2	87
56	Using Long-Term Population Monitoring Data to Prioritize Conservation Action among Rare Plant Species. Natural Areas Journal, 2019, 39, 169.	0.5	3
57	Exotic plant species receive adequate pollinator service despite variable integration into plant–pollinator networks. Oecologia, 2018, 187, 135-142.	2.0	17
58	GLMM BACI environmental impact analysis shows coastal dune restoration reduces seed predation on an endangered plant. Restoration Ecology, 2018, 26, 1190-1194.	2.9	13
59	Role of multiple invasion mechanisms and their interaction in regulating the population dynamics of an exotic tree. Journal of Applied Ecology, 2018, 55, 885-894.	4.0	10
60	A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB PLANTS, 2018, 10, ply068.	2.3	26
61	Embracing scaleâ€dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 2018, 21, 1737-1751.	6.4	204
62	Count population viability analysis finds that interacting local and regional threats affect the viability of a rare plant. Ecological Indicators, 2018, 93, 822-829.	6.3	5
63	Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community. Ecology, 2017, 98, 1651-1659.	3.2	19
64	Effects of seed density and proximity to refuge habitat on seed predation rates for a rare and a common Lupinus species. American Journal of Botany, 2017, 104, 389-398.	1.7	13
65	Experimental Grazing and Grass-Specific Herbicide Application Benefit Rare Forb Recruitment. Natural Areas Journal, 2017, 37, 161-169.	0.5	0
66	Habitat patch size alters the importance of dispersal for species diversity in an experimental freshwater community. Ecology and Evolution, 2017, 7, 5774-5783.	1.9	16
67	Competition overwhelms the positive plant–soil feedback generated by an invasive plant. Oecologia, 2017, 183, 211-220.	2.0	70
68	Increased drought frequency alters the optimal management strategy of an endangered plant. Biological Conservation, 2016, 203, 243-251.	4.1	16
69	Fire indirectly benefits fitness in two invasive species. Biological Invasions, 2016, 18, 1265-1273.	2.4	17
70	Positive frequency dependence undermines the success of restoration using historical disturbance regimes. Ecology Letters, 2015, 18, 883-891.	6.4	16
71	Early Successional Microhabitats Allow the Persistence of Endangered Plants in Coastal Sand Dunes. PLoS ONE, 2015, 10, e0119567.	2.5	24
72	More individuals drive the species energy–area relationship in an experimental zooplankton community. Oikos, 2015, 124, 1065-1070.	2.7	12

#	Article	IF	CITATIONS
73	Additive and nonâ€additive effects of birch genotypic diversity on arthropod herbivory in a longâ€ŧerm field experiment. Oikos, 2015, 124, 697-706.	2.7	36
74	â€~Bigger data' on scale-dependent effects of invasive species on biodiversity cannot overcome confounded analyses: a comment on Stohlgren & Rejmánek (2014). Biology Letters, 2015, 11, 20150103.	2.3	8
75	Minimal Effects of an Invasive Flowering Shrub on the Pollinator Community of Native Forbs. PLoS ONE, 2014, 9, e109088.	2.5	8
76	Scaleâ€dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecology Letters, 2013, 16, 17-26.	6.4	250
77	Invasive Plants Have Scale-Dependent Effects on Diversity by Altering Species-Area Relationships. Science, 2013, 339, 316-318.	12.6	261
78	Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function. Science, 2013, 339, 1611-1615.	12.6	840
79	Ability of Matrix Models to Explain the Past and Predict the Future of Plant Populations. Conservation Biology, 2013, 27, 968-978.	4.7	104
80	Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. Ecology, 2013, 94, 995-1004.	3.2	49
81	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
82	A seasonal, densityâ€dependent model for the management of an invasive weed. Ecological Applications, 2013, 23, 1893-1905.	3.8	13
83	Shifts in pollinator composition and behavior cause slow interaction accumulation with area in plant–pollinator networks. Ecology, 2012, 93, 2329-2335.	3.2	27
84	Matrix population models from 20 studies of perennial plant populations. Ecology, 2012, 93, 951-951.	3.2	12
85	A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 2011, 98, 539-548.	1.7	278
86	On the utility of population models for invasive plant management: response to Evans and Davis. , 2011, 21, 614-618.		11
87	How do plant ecologists use matrix population models?. Ecology Letters, 2011, 14, 1-8.	6.4	205
88	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
89	Comparison of the herbivore defense and competitive ability of ancestral and modern genotypes of an invasive plant, <i>Lespedeza cuneata</i> . Oikos, 2011, 120, 1413-1419.	2.7	57
90	Comparing the reproductive success and pollination biology of an invasive plant to its rare and common native congeners: a case study in the genus Cirsium (Asteraceae). Biological Invasions, 2011, 13, 905-917.	2.4	36

#	Article	IF	CITATIONS
91	A phylogenetically controlled analysis of the roles of reproductive traits in plant invasions. Oecologia, 2011, 166, 1009-1017.	2.0	60
92	Will the Use of Less Fecund Cultivars Reduce the Invasiveness of Perennial Plants?. BioScience, 2011, 61, 816-822.	4.9	38
93	Seed dispersal by pulp consumers, not "legitimate―seed dispersers, increases Guettarda viburnoides population growth. Ecology, 2010, 91, 2684-2695.	3.2	36
94	Apparent competition with an invasive plant hastens the extinction of an endangered lupine. Ecology, 2010, 91, 2261-2271.	3.2	88
95	Is reproduction of endemic plant species particularly pollen limited in biodiversity hotspots?. Oikos, 2010, 119, 1192-1200.	2.7	53
96	Empirical tests of lifeâ€history evolution theory using phylogenetic analysis of plant demography. Journal of Ecology, 2010, 98, 334-344.	4.0	56
97	Causes and consequences of variation in plant population growth rate: a synthesis of matrix population models in a phylogenetic context. Ecology Letters, 2010, 13, 1182-1197.	6.4	161
98	Breeding system and pollination ecology of introduced plants compared to their native relatives. American Journal of Botany, 2009, 96, 1544-1550.	1.7	43
99	Herbivory and population dynamics of invasive and native Lespedeza. Oecologia, 2009, 161, 57-66.	2.0	33
100	Interactive Effects of Harvest and Deer Herbivory on the Population Dynamics of American Ginseng. Conservation Biology, 2009, 23, 719-728.	4.7	34
101	Effects of community-level grassland management on the non-target rare annual Agalinis auriculata. Biological Conservation, 2009, 142, 798-805.	4.1	18
102	Population growth rate of a common understory herb decreases non-linearly across a gradient of deer herbivory. Forest Ecology and Management, 2009, 257, 1095-1103.	3.2	67
103	Deer Facilitate Invasive Plant Success in a Pennsylvania Forest Understory. Natural Areas Journal, 2009, 29, 110-116.	0.5	154
104	Ovule number per flower in a world of unpredictable pollination. American Journal of Botany, 2009, 96, 1159-1167.	1.7	81
105	General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. Journal of Applied Ecology, 2008, 45, 1124-1133.	4.0	156
106	LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIABILITY. Ecology, 2008, 89, 19-25.	3.2	386
107	Evolutionary Dynamics as a Component of Stageâ€Structured Matrix Models: An Example Using <i>Trillium grandiflorum</i> . American Naturalist, 2008, 172, 375-392.	2.1	44

Consequences of Density Dependence for Management of a Stage-Structured Invasive Plant (Alliaria) Tj ETQq $0.0 rg \beta T$ /Overlock 10 Tf

#	Article	IF	CITATIONS
109	Inter-Annual Associations Between Precipitation and Human Incidence of West Nile Virus in the United States. Vector-Borne and Zoonotic Diseases, 2007, 7, 337-343.	1.5	112
110	Population-level Consequences of Herbivory Timing in Trillium Grandiflorum. American Midland Naturalist, 2007, 157, 27-38.	0.4	53
111	POPULATION-LEVEL EFFECTS OF AUGMENTED HERBIVORY ONLESPEDEZA CUNEATA: IMPLICATIONS FOR BIOLOGICAL CONTROL. , 2007, 17, 965-971.		26
112	Habitat area affects arthropod communities directly and indirectly through top predators. Ecography, 2007, 30, 359-366.	4.5	20
113	Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 956-961.	7.1	259
114	A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. American Journal of Botany, 2006, 93, 271-277.	1.7	198
115	Antagonistic effects of seed dispersal and herbivory on plant migration. Ecology Letters, 2006, 9, 319-326.	6.4	39
116	Predation on mutualists can reduce the strength of trophic cascades. Ecology Letters, 2006, 9, 1173-1178.	6.4	48
117	Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion. Biological Invasions, 2006, 8, 1643-1649.	2.4	34
118	Trophic cascades across ecosystems. Nature, 2005, 437, 880-883.	27.8	450
119	Ecological Succession: Out of the Ash. Current Biology, 2005, 15, R926-R927.	3.9	4
120	FIRE GENERATES SPATIAL GRADIENTS IN HERBIVORY: AN EXAMPLE FROM A FLORIDA SANDHILL ECOSYSTEM. Ecology, 2005, 86, 587-593.	3.2	87
121	Plant Population Dynamics, Pollinator Foraging, and the Selection of Selfâ€Fertilization. American Naturalist, 2005, 166, 169-183.	2.1	101
122	Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 467-497.	8.3	888
123	POLLEN LIMITATION OF PLANT REPRODUCTION: ECOLOGICAL AND EVOLUTIONARY CAUSES AND CONSEQUENCES. Ecology, 2004, 85, 2408-2421.	3.2	1,004
124	Allee Effects, Immigration, and the Evolution of Species' Niches. American Naturalist, 2004, 163, 253-262.	2.1	62
125	Effects of interspecific competition, predation, and their interaction on survival and development time of immature Anopheles quadrimaculatus. Journal of Vector Ecology, 2004, 29, 277-84.	1.0	43
126	Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia, 2003, 137, 557-563.	2.0	104

8

#	Article	IF	CITATIONS
127	Drought-induced mosquito outbreaks in wetlands. Ecology Letters, 2003, 6, 1017-1024.	6.4	223
128	Effects of herbivory and its timing across populations of <i>Trillium grandiflorum</i> (Liliaceae). American Journal of Botany, 2003, 90, 1207-1214.	1.7	102
129	COMMUNITY GENETICS: TOWARD A SYNTHESIS. Ecology, 2003, 84, 580-582.	3.2	26