Francis J Castellino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation. Journal of Biological Chemistry, 2022, , 101940.	3.4	0
2	Relationships Between Plasminogen-Binding M-Protein and Surface Enolase for Human Plasminogen Acquisition and Activation in Streptococcus pyogenes. Frontiers in Microbiology, 2022, 13, .	3.5	3
3	Streptococcus co-opts a conformational lock in human plasminogen to facilitate streptokinase cleavage and bacterial virulence. Journal of Biological Chemistry, 2021, 296, 100099.	3.4	5
4	Group A Streptococcus-Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Frontiers in Cardiovascular Medicine, 2021, 8, 667554.	2.4	3
5	Binding of the kringleâ€2 domain of human plasminogen to streptococcal PAMâ€type Mâ€protein causes dissociation of PAM dimers. MicrobiologyOpen, 2021, 10, e1252.	3.0	1
6	Plasminogen Deficiency Significantly Reduces Vascular Wall Disease in a Murine Model of Type IIa Hypercholesterolemia. Biomedicines, 2021, 9, 1832.	3.2	6
7	Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science, 2021, 374, eabl5450.	12.6	75
8	The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. Journal of Bacteriology, 2020, 202, .	2.2	6
9	A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans. Journal of Biological Chemistry, 2020, 295, 10638-10652.	3.4	4
10	In situ metabolite and lipid analysis of GluN2Dâ^'/â^' and wild-type mice after ischemic stroke using MALDI MSI. Analytical and Bioanalytical Chemistry, 2020, 412, 6275-6285.	3.7	11
11	Synthetic Antimicrobial Peptide Tuning Permits Membrane Disruption and Interpeptide Synergy. ACS Pharmacology and Translational Science, 2020, 3, 418-424.	4.9	18
12	A local α-helix drives structural evolution of streptococcal M-protein affinity for host human plasminogen. Biochemical Journal, 2020, 477, 1613-1630.	3.7	4
13	Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. Journal of Structural Biology, 2019, 208, 18-29.	2.8	8
14	Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding. Journal of Molecular Biology, 2019, 431, 3804-3813.	4.2	9
15	Recognition of Plasminogen Activator Inhibitor Type 1 as the Primary Regulator of Fibrinolysis. Current Drug Targets, 2019, 20, 1695-1701.	2.1	52
16	Characterizing the role of tissue-type plasminogen activator in a mouse model of Group A streptococcal infection. Microbes and Infection, 2019, 21, 412-417.	1.9	2
17	Variations in the secondary structures of PAM proteins influence their binding affinities to human plasminogen. Journal of Structural Biology, 2019, 206, 193-203.	2.8	15
18	Rational design of syn-safencin, a novel linear antimicrobial peptide derived from the circular bacteriocin safencin AS-48. Journal of Antibiotics, 2018, 71, 592-600.	2.0	20

#	Article	IF	CITATIONS
19	A deficiency of the GluN2C subunit of the N-methyl-D-aspartate receptor is neuroprotective in a mouse model of ischemic stroke. Biochemical and Biophysical Research Communications, 2018, 495, 136-144.	2.1	13
20	Draft Genome Sequences of Six Skin Isolates of Streptococcus pyogenes. Genome Announcements, 2018, 6, .	0.8	1
21	Contributions of different modules of the plasminogen-binding Streptococcus pyogenes M-protein that mediate its functional dimerization. Journal of Structural Biology, 2018, 204, 151-164.	2.8	14
22	Characterization of Atherosclerosis Formation in a Murine Model of Type IIa Human Familial Hypercholesterolemia. BioMed Research International, 2018, 2018, 1-17.	1.9	9
23	Variable region in streptococcal M-proteins provides stable binding with host fibrinogen for plasminogen-mediated bacterial invasion. Journal of Biological Chemistry, 2017, 292, 6775-6785.	3.4	18
24	Conformationally organized lysine isosteres in Streptococcus pyogenes M protein mediate direct high-affinity binding to human plasminogen. Journal of Biological Chemistry, 2017, 292, 15016-15027.	3.4	13
25	Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L74-L86.	2.9	34
26	Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4. Biochemical and Biophysical Research Communications, 2016, 477, 503-508.	2.1	44
27	Discerning the Role of the Hydroxyproline Residue in the Structure of Conantokin Rl-B and Its Role in GluN2B Subunit-Selective Antagonistic Activity toward <i>N</i> Methyl- <scp>d</scp> -Aspartate Receptors. Biochemistry, 2016, 55, 7112-7122.	2.5	3
28	A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood, 2016, 127, 1085-1096.	1.4	33
29	Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Scientific Reports, 2016, 6, 36644.	3.3	24
30	Genomic Characterization of a Pattern D Streptococcus pyogenes <i>emm53</i> Isolate Reveals a Genetic Rationale for Invasive Skin Tropicity. Journal of Bacteriology, 2016, 198, 1712-1724.	2.2	22
31	Pharmacology of triheteromeric N-Methyl-d-Aspartate Receptors. Neuroscience Letters, 2016, 617, 240-246.	2.1	24
32	Streptococcus pyogenes Employs Strain-dependent Mechanisms of C3b Inactivation to Inhibit Phagocytosis and Killing of Bacteria. Journal of Biological Chemistry, 2016, 291, 9181-9189.	3.4	20
33	Novel genomic rearrangements mediated by multiple genetic elements in Streptococcus pyogenes M23ND confer potential for evolutionary persistence. Microbiology (United Kingdom), 2016, 162, 1346-1359.	1.8	6
34	Abrogation of Plasminogen Activator Inhibitor-1-Vitronectin Interaction Ameliorates Acute Kidney Injury in Murine Endotoxemia. PLoS ONE, 2015, 10, e0120728.	2.5	18
35	Conantokin-G Attenuates Detrimental Effects of NMDAR Hyperactivity in an Ischemic Rat Model of Stroke. PLoS ONE, 2015, 10, e0122840.	2.5	18
36	Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors. Journal of Biological Chemistry, 2015, 290, 18156-18172.	3.4	8

#	Article	IF	CITATIONS
37	Direct Host Plasminogen Binding to Bacterial Surface M-protein in Pattern D Strains of Streptococcus pyogenes Is Required for Activation by Its Natural Coinherited SK2b Protein. Journal of Biological Chemistry, 2015, 290, 18833-18842.	3.4	22
38	CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants. Journal of Bacteriology, 2015, 197, 3191-3205.	2.2	17
39	Structural and Functional Properties of Nâ€Methylâ€Dâ€Aspartate Receptorâ€Specific ConRlB. FASEB Journal, 2015, 29, 570.13.	0.5	0
40	Mutations in the Control of Virulence Sensor Gene from Streptococcus pyogenes after Infection in Mice Lead to Clonal Bacterial Variants with Altered Gene Regulatory Activity and Virulence. PLoS ONE, 2014, 9, e100698.	2.5	27
41	Dimerization Is Not a Determining Factor for Functional High Affinity Human Plasminogen Binding by the Group A Streptococcal Virulence Factor PAM and Is Mediated by Specific Residues within the PAM a1a2 Domain. Journal of Biological Chemistry, 2014, 289, 21684-21693.	3.4	17
42	Synthetic conantokin peptides potently inhibit Nâ€methylâ€Dâ€aspartate receptorâ€mediated currents of retinal ganglion cells. Journal of Neuroscience Research, 2014, 92, 1767-1774.	2.9	7
43	Probing NMDA receptor GluN2A and GluN2B subunit expression and distribution in cortical neurons. Neuropharmacology, 2014, 79, 542-549.	4.1	7
44	Unique Genomic Arrangements in an Invasive Serotype M23 Strain of Streptococcus pyogenes Identify Genes That Induce Hypervirulence. Journal of Bacteriology, 2014, 196, 4089-4102.	2.2	20
45	The β-domain of cluster 2b streptokinase is a major determinant for the regulation of its plasminogen activation activity by cellular plasminogen receptors. Biochemical and Biophysical Research Communications, 2014, 444, 595-598.	2.1	14
46	Non-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with ¹⁸ F-FDG. Journal of Visualized Experiments, 2014, , .	0.3	9
47	A Natural Inactivating Mutation in the CovS Component of the CovRS Regulatory Operon in a Pattern D Streptococcal pyogenes Strain Influences Virulence-associated Genes*. Journal of Biological Chemistry, 2013, 288, 6561-6573.	3.4	29
48	Functional differences between Streptococcus pyogenes cluster 1 and cluster 2b streptokinases are determined by their β-domains. FEBS Letters, 2013, 587, 1304-1309.	2.8	19
49	Complement-mediated Opsonization of Invasive Group A Streptococcus pyogenes Strain AP53 Is Regulated by the Bacterial Two-component Cluster of Virulence Responder/Sensor (CovRS) System. Journal of Biological Chemistry, 2013, 288, 27494-27504.	3.4	24
50	Antagonist Properties of Conus parius Peptides on N-Methyl-D-Aspartate Receptors and Their Effects on CREB Signaling. PLoS ONE, 2013, 8, e81405.	2.5	5
51	Bacterial Plasminogen Receptors Utilize Host Plasminogen System for Effective Invasion and Dissemination. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-19.	3.0	125
52	Characterization of Streptokinases from Group A Streptococci Reveals a Strong Functional Relationship That Supports the Coinheritance of Plasminogen-binding M Protein and Cluster 2b Streptokinase. Journal of Biological Chemistry, 2012, 287, 42093-42103.	3.4	36
53	Opposing action of conantokin-G on synaptically and extrasynaptically-activated NMDA receptors. Neuropharmacology, 2012, 62, 2227-2238.	4.1	10
54	Abnormal Whole Blood Thrombi in Humans with Inherited Platelet Receptor Defects. PLoS ONE, 2012, 7, e52878.	2.5	9

#	Article	IF	CITATIONS
55	An accompanying genetic severe deficiency of tissue factor protects mice with a protein C deficiency from lethal endotoxemia. Blood, 2011, 117, 283-289.	1.4	9
56	The crystal structure of the calcium-bound con-G[Q6A] peptide reveals a novel metal-dependent helical trimer. Journal of Biological Inorganic Chemistry, 2011, 16, 257-266.	2.6	4
57	Ca2+-induced self-assembly in designed peptides with optimally spaced gamma-carboxyglutamic acid residues. Journal of Inorganic Biochemistry, 2011, 105, 52-57.	3.5	10
58	NMR Backbone Dynamics of VEK-30 Bound to the Human Plasminogen Kringle 2 Domain. Biophysical Journal, 2010, 99, 302-312.	0.5	14
59	Solution structure of the complex of VEK-30 and plasminogen kringle 2. Journal of Structural Biology, 2010, 169, 349-359.	2.8	21
60	A single plasmid transfection that offers a significant advantage associated with puromycin selection in Drosophila Schneider S2 cells expressing heterologous proteins. Cytotechnology, 2008, 57, 45-49.	1.6	33
61	The Lack of Binding of VEK-30, an Internal Peptide from the Group A Streptococcal M-like Protein, PAM, to Murine Plasminogen Is due to Two Amino Acid Replacements in the Plasminogen Kringle-2 Domain. Journal of Biological Chemistry, 2008, 283, 1580-1587.	3.4	19
62	\hat{I}^3 -Glutamate and $\hat{I}^2 \hat{a} \in$ "Hydroxyaspartate in Proteins. , 2008, 446, 85-94.		8
63	Subtype-selective antagonism of N-methyl-d-aspartate receptor ion channels by synthetic conantokin peptides. Neuropharmacology, 2007, 53, 145-156.	4.1	28
64	X-ray Crystallographic Structure of the Angiogenesis Inhibitor, Angiostatin, Bound to a Peptide from the Group A Streptococcal Surface Protein PAMâ€,‡. Biochemistry, 2006, 45, 11052-11060.	2.5	23
65	Plasminogen Activator Inhibitor 1 Deficiency Reduces the Progression of Atherosclerosis in a Murine Model of Human Familial Hypercholesterolemia Blood, 2006, 108, 1804-1804.	1.4	0
66	Performance of Murine Soluble Thrombomodulin (rmsTM) in a Murine Model of Endotoxin-Induced Sepsis Blood, 2006, 108, 3933-3933.	1.4	0
67	Focal arterial inflammation is augmented in mice with a deficiency of the protein C gene. Thrombosis and Haemostasis, 2006, 96, 794-801.	3.4	5
68	Structure and function of the plasminogen/plasmin system. Thrombosis and Haemostasis, 2005, 93, 647-654.	3.4	404
69	Protective Effect of Activated Protein C in Murine Endotoxemia: Mechanism of Action Blood, 2005, 106, 26-26.	1.4	6
70	Recombinant Human Activated Protein C Suppresses Endotoxin Induced Hypotension in Mice Deficient of the Endothelial Protein C Receptor (EPCR) Blood, 2005, 106, 3696-3696.	1.4	0
71	γ-Glutamate and β-Hydroxyaspartate in Proteins. , 2002, 194, 259-268.		0
72	Use of Phospholipid Bilayers and Monolayers in Binding Studies of Vitamin K-Dependent Blood Coagulation Proteins. , 2002, 199, 233-244.		1

#	Article	IF	CITATIONS
73	Mice with a severe deficiency of the endothelial protein C receptor gene develop, survive, and reproduce normally, and do not present with enhanced arterial thrombosis after challenge. Thrombosis and Haemostasis, 2002, 88, 462-72.	3.4	30
74	Domain Interactions between Streptokinase and Human Plasminogenâ€. Biochemistry, 2001, 40, 14686-14695.	2.5	48
75	Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcal surface protein 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 308, 705-719.	4.2	62
76	Increased expression of NR2A subunit does not alter NMDA-evoked responses in cultured fetal trisomy 16 mouse hippocampal neurons. Journal of Neurochemistry, 2001, 76, 1663-1669.	3.9	8
77	Amino acid determinants for NMDA receptor inhibition by conantokin-T. Journal of Neurochemistry, 2001, 77, 812-822.	3.9	22
78	Attenuation of Neointima Formation Following Arterial Injury in PAIâ€1 Deficient Mice. Annals of the New York Academy of Sciences, 2001, 936, 466-468.	3.8	20
79	Development of Pulmonary Fibrosis in Fibrinogenâ€Deficient Mice. Annals of the New York Academy of Sciences, 2001, 936, 542-548.	3.8	39
80	Structure-function relationships of the NMDA receptor antagonist peptide, conantokin-R. FEBS Letters, 2000, 470, 139-146.	2.8	22
81	Enhancement through Mutagenesis of the Binding of the Isolated Kringle 2 Domain of Human Plasminogen to ω-Amino Acid Ligands and to an Internal Sequence of a Streptococcal Surface Protein. Journal of Biological Chemistry, 1999, 274, 22380-22386.	3.4	20
82	Expression of Human Plasminogen inDrosophilaSchneider S2 Cells. Protein Expression and Purification, 1999, 16, 136-143.	1.3	44
83	NMDA-receptor antagonist requirements in conantokin-G. FEBS Letters, 1998, 435, 257-262.	2.8	24
84	Mapping of Disulfide Bridges in Antifreeze Proteins from Overwintering Larvae of the BeetleDendroides canadensisâ€. Biochemistry, 1998, 37, 6343-6350.	2.5	53
85	Structure and Ligand Binding Determinants of the Recombinant Kringle 5 Domain of Human Plasminogenâ€,‡. Biochemistry, 1998, 37, 3258-3271.	2.5	98
86	Kringle 2 Mediates High Affinity Binding of Plasminogen to an Internal Sequence in Streptococcal Surface Protein PAM. Journal of Biological Chemistry, 1998, 273, 24420-24424.	3.4	72
87	Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB Journal, 1998, 12, 1731-1738.	0.5	123
88	Highly conserved residue arginine-15 is required for the Ca2+-dependent properties of the γ-carboxyglutamic acid domain of human anticoagulation Protein C and activated Protein C. Biochemical Journal, 1997, 322, 309-315.	3.7	10
89	Purification and properties of <i>î±</i> -mannosidase II from Golgi-like membranes of baculovirus-infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochemical Journal, 1997, 324, 951-956.	3.7	34
90	Serine-578 Is a Major Phosphorylation Locus in Human Plasma Plasminogenâ€. Biochemistry, 1997, 36, 8100-8106.	2.5	23

#	Article	IF	CITATIONS
91	Role of Tryptophan-63 of the Kringle 2 Domain of Tissue-Type Plasminogen Activator in Its Thermal Stability, Folding, and Ligand Binding Propertiesâ€. Biochemistry, 1997, 36, 7652-7663.	2.5	25
92	The NMR solution structure of the NMDA receptor antagonist, conantokin-T, in the absence of divalent metal ions. FEBS Letters, 1997, 411, 19-26.	2.8	26
93	Activation of Human Plasminogen by Staphylokinase. Direct Evidence That Preformed Plasmin Is Necessary for Activation to Occur. Blood, 1997, 89, 1585-1589.	1.4	47
94	The Kringle Domains of Human Plasminogen. Novartis Foundation Symposium, 1997, 212, 46-65.	1.1	45
95	Properties of a Recombinant Chimeric Protein in which the gamma-Carboxyglutamic Acid and Helical Stack Domains of Human Anticoagulant Protein C Are Replaced by those of Human Coagulation Factor VII. Thrombosis and Haemostasis, 1997, 77, 0926-0933.	3.4	8
96	Highâ€level secretion in <i>Pichia pastoris</i> and biochemical characterization of the recombinantkringle 2 domain of tissueâ€type plasminogen activator. Biotechnology and Applied Biochemistry, 1997, 25, 63-74.	3.1	21
97	Activation of Human Plasminogen by Staphylokinase. Direct Evidence That Preformed Plasmin Is Necessary for Activation to Occur. Blood, 1997, 89, 1585-1589.	1.4	11
98	Calcium Binding Properties of Synthetic γ-Carboxyglutamic Acid-Containing Marine Cone Snail "Sleeper―Peptides, Conantokin-G and Conantokin-Tâ€. Biochemistry, 1996, 35, 16528-16534.	2.5	74
99	The Hydrophobic Nature of Residue-5 of Human Protein C Is a Major Determinant of Its Functional Interactions with Acidic Phospholipid Vesicles. Biochemistry, 1996, 35, 7093-7099.	2.5	19
100	Crystal Structures of the Recombinant Kringle 1 Domain of Human Plasminogen in Complexes with the Ligands Îμ-Aminocaproic Acid and trans-4-(Aminomethyl)cyclohexane-1-carboxylic Acid. Biochemistry, 1996, 35, 2567-2576.	2.5	84
101	Nucleotide Structure and Characterization of the Murine Blood Coagulation Factor VII Gene. Thrombosis and Haemostasis, 1996, 76, 0957-0964.	3.4	12
102	The entire γâ€carboxyglutamic acid†and helical stackâ€domains of human coagulation factor IX are required for optimal binding to its endothelial cell receptor. International Journal of Peptide and Protein Research, 1996, 48, 281-285.	0.1	6
103	Characterization of a cDNA Encoding Murine Coagulation Factor VII. Thrombosis and Haemostasis, 1996, 75, 481-487.	3.4	20
104	Functional Consequences of Mutations in Amino Acid Residues that Stabilize Calcium Binding to the First Epidermal Growth Factor Homology Domain of Human Protein C. Thrombosis and Haemostasis, 1996, 76, 720-728.	3.4	6
105	The Propeptides of Human Protein C, Factor VII, and Factor IX Are Exchangeable with Regard to Directing Gamma-Carboxylation of these Proteins. Thrombosis and Haemostasis, 1996, 76, 205-207.	3.4	0
106	Contributions of Individual Kringle Domains toward Maintenance of the Chloride-Induced Tight Conformation of Human Glutamic Acid-1 Plasminogen. Biochemistry, 1995, 34, 9581-9586.	2.5	42
107	Roles of individual kringle domains in the functioning of positive and negative effectors of human plasminogen activation. Biochemistry, 1995, 34, 1482-1488.	2.5	43
108	The importance of the hydrophobic components of the binding energies in the interaction of ωâ€amino acid ligands with isolated kringle polypeptide domains of human plasminogen. International Journal of Peptide and Protein Research, 1995, 46, 464-470.	0.1	11

#	Article	IF	CITATIONS
109	Role of the Strictly Conserved Tryptophan-25 Residue in the Stabilization of the Structure and in the Ligand Binding Properties of the Kringle 2 Domain of Tissue-Type Plasminogen Activator. Biochemistry, 1994, 33, 1340-1344.	2.5	13
110	Involvement of Tyrosine-76 of the Kringle 2 Domain of Tissue-Type Plasminogen Activator in Its Thermal Stability and Its .omegaAmino Acid Ligand Binding Site. Biochemistry, 1994, 33, 3509-3514.	2.5	16
111	Specific anionic residues of the recombinant kringle 2 domain of tissue-type plasminogen activator that are responsible for stabilization of its interaction with .omegaamino acid ligands. Biochemistry, 1993, 32, 3540-3548.	2.5	29
112	Binding of calcium to synthetic peptides containing γâ€carboxyglutamic acid. International Journal of Peptide and Protein Research, 1993, 41, 567-575.	0.1	20
113	The cationic locus on the recombinant kringle 2 domain of tissue-type plasminogen activator that stabilizes its interaction with .omegaamino acids. Biochemistry, 1992, 31, 11698-11706.	2.5	25
114	Role of tryptophan-74 of the recombinant kringle 2 domain of tissue-type plasminogen activator in its .omegaamino acid binding properties. Biochemistry, 1992, 31, 3326-3335.	2.5	30
115	Synthesis, purification, and properties of a peptide that enhances the activation of human [Glu ₁]plasminogen by tissue plasminogen activator and retards fibrin polymerization. International Journal of Peptide and Protein Research, 1990, 35, 73-80.	0.1	23
116	Effects of human fibrinogen and its cleavage products on activation of human plasminogen by streptokinase. Biochemistry, 1985, 24, 3429-3434.	2.5	67
117	Biochemistry of Human Plasminogen. Seminars in Thrombosis and Hemostasis, 1984, 10, 18-23.	2.7	88
118	The effect of Ϊμ-amino caproic acid on the gross conformation of plasminogen and plasmin. Archives of Biochemistry and Biophysics, 1975, 170, 300-305.	3.0	85
119	Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochemical and Biophysical Research Communications, 1974, 57, 47-54.	2.1	83
120	Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Archives of Biochemistry and Biophysics, 1972, 151, 194-199.	3.0	308
121	Multiplicity of rabbit plasminogen. Physical characterization. Biochemistry, 1972, 11, 4451-4458.	2.5	85