List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332524/publications.pdf Version: 2024-02-01

	1099	2629
44,974	112	194
citations	h-index	g-index
411	411	38127
docs citations	times ranked	citing authors
	citations 411	44,974 112 citations h-index 411 411

Οινοχή Υλν

#	Article	IF	CITATIONS
1	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium″on Batteries. Advanced Materials, 2022, 34, e2101474.	21.0	140
2	High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21, 503-513.	27.5	248
3	Green Recycling Methods to Treat Lithiumâ€lon Batteries Eâ€Waste: A Circular Approach to Sustainability. Advanced Materials, 2022, 34, e2103346.	21.0	148
4	Atomic‣evel Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	12.0	29
5	Achieving Enhanced Thermoelectric Performance in Multiphase Materials. Accounts of Materials Research, 2022, 3, 237-246.	11.7	23
6	lmproved <i>zT</i> in Nb ₅ Ge ₃ –GeTe thermoelectric nanocomposite. Nanoscale, 2022, 14, 410-418.	5.6	16
7	Thermoelectric Performance of the 2D Bi ₂ Si ₂ Te ₆ Semiconductor. Journal of the American Chemical Society, 2022, 144, 1445-1454.	13.7	37
8	Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. Energy and Environmental Science, 2022, 15, 368-375.	30.8	107
9	Vanadiumâ€based metalâ€organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat, 2022, 3, 384-416.	10.7	51
10	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	21.0	25
11	Promoting the Waterâ€Reduction Kinetics and Alkali Tolerance of MoNi ₄ Nanocrystals via a Mo ₂ TiC ₂ T <i>_x</i> Induced Builtâ€In Electric Field. Small, 2022, 18, e2107541.	10.0	19
12	Efficient and Selective CO ₂ Reduction to Formate on Pdâ€Đoped Pb ₃ (CO ₃) ₂ (OH) ₂ : Dynamic Catalyst Reconstruction and Accelerated CO ₂ Protonation. Small, 2022, 18, e2107885.	10.0	18
13	Atomicâ€Level Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, .	12.0	2
14	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 2022, 16, 8213-8222.	14.6	109
15	A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. Materials Today Advances, 2022, 14, 100227.	5.2	20
16	Designing good compatibility factor in segmented Bi0.5Sb1.5Te3 – GeTe thermoelectrics for high power conversion efficiency. Nano Energy, 2022, 96, 107147.	16.0	24
17	Valence Disproportionation of GeS in the PbS Matrix Forms Pb ₅ Ge ₅ S ₁₂ Inclusions with Conduction Band Alignment Leading to High n-Type Thermoelectric Performance. Journal of the American Chemical Society, 2022, 144, 7402-7413.	13.7	24
18	Integrating recyclable polymers into thermoelectric devices for green electronics. Journal of Materials Chemistry A, 2022, 10, 19787-19796.	10.3	21

#	Article	IF	CITATIONS
19	Upcycling Silicon Photovoltaic Waste into Thermoelectrics (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	21.0	0
20	Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. Journal of the American Chemical Society, 2022, 144, 11444-11455.	13.7	63
21	Enhanced near-room-temperature thermoelectric performance in GeTe. Rare Metals, 2022, 41, 3027-3034.	7.1	17
22	Constructing a multi-bishelled cobalt-based electrocatalyst for the oxygen evolution reaction in CO2 electrolysis. NPG Asia Materials, 2022, 14, .	7.9	9
23	Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy, 2021, 79, 105429.	16.0	117
24	Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Materials Chemistry Frontiers, 2021, 5, 744-762.	5.9	49
25	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie, 2021, 133, 272-277.	2.0	7
26	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie - International Edition, 2021, 60, 268-273.	13.8	28
27	Konjac glucomannan biopolymer as a multifunctional binder to build a solid permeable interface on Na ₃ V ₂ (PO ₄) ₃ /C cathodes for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 9864-9874.	10.3	16
28	Realizing zT Values of 2.0 in Cubic GeTe. ChemNanoMat, 2021, 7, 476-482.	2.8	35
29	Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage. Small, 2021, 17, e2008047.	10.0	23
30	Electrochemical Energy Storage: Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage (Small 21/2021). Small, 2021, 17, 2170103.	10.0	0
31	Multiwall carbon nanotubes derived from plastic packaging waste as a highâ€performance electrode material for supercapacitors. International Journal of Energy Research, 2021, 45, 19611-19622.	4.5	26
32	Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021, 4, 868-876.	23.7	264
33	Bilateral Interfaces in In ₂ Se ₃ -CoIn ₂ -CoSe ₂ Heterostructures for High-Rate Reversible Sodium Storage. ACS Nano, 2021, 15, 13307-13318.	14.6	99
34	In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review. Batteries, 2021, 7, 53.	4.5	27
35	High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nature Communications, 2021, 12, 4793.	12.8	53
36	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27

#	Article	IF	CITATIONS
37	Cubic AgMnSbTe ₃ Semiconductor with a High Thermoelectric Performance. Journal of the American Chemical Society, 2021, 143, 13990-13998.	13.7	56
38	Dynamic Restructuring of Cuâ€Đoped SnS ₂ Nanoflowers for Highly Selective Electrochemical CO ₂ Reduction to Formate. Angewandte Chemie, 2021, 133, 26437-26441.	2.0	8
39	Dynamic Restructuring of Cuâ€Doped SnS ₂ Nanoflowers for Highly Selective Electrochemical CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2021, 60, 26233-26237.	13.8	66
40	Electrochemical reduction of nitrogen to ammonia: Progress, challenges and future outlook. Current Opinion in Electrochemistry, 2021, 29, 100808.	4.8	11
41	Lattice strain and atomic replacement of CoO6 octahedra in layered sodium cobalt oxide for boosted water oxidation electrocatalysis. Applied Catalysis B: Environmental, 2021, 297, 120477.	20.2	30
42	Thermoelectric materials and transport physics. Materials Today Physics, 2021, 21, 100519.	6.0	77
43	Defect engineering in thermoelectric materials: what have we learned?. Chemical Society Reviews, 2021, 50, 9022-9054.	38.1	201
44	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	10.3	38
45	Ni nanoparticles/V ₄ C ₃ T _x MXene heterostructures for electrocatalytic nitrogen fixation. Materials Chemistry Frontiers, 2021, 5, 2338-2346.	5.9	38
46	High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu ₂ SnSe ₃ . Advanced Energy Materials, 2021, 11, 2100661.	19.5	39
47	MXenes as a versatile platform for reactive surface modification and superior sodiumâ€ion storages. Exploration, 2021, 1, 20210024.	11.0	80
48	Highâ€entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat, 2021, 1, 482-505.	14.9	59
49	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 101-107.	4.7	8
50	Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Research, 2020, 13, 1867-1874.	10.4	23
51	Thermal Stability and Mechanical Response of Bi ₂ Te ₃ -Based Materials for Thermoelectric Applications. ACS Applied Energy Materials, 2020, 3, 2078-2089.	5.1	56
52	Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Materials Horizons, 2020, 7, 32-53.	12.2	61
53	Freeâ€Standing Hydrated Sodium Vanadate Papers for Highâ€Stability Zincâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 254-260.	4.7	26
54	Cu- and Fe-Codoped Ni Porous Networks as an Active Electrocatalyst for Hydrogen Evolution in Alkaline Medium. ACS Applied Materials & Interfaces, 2020, 12, 2380-2389.	8.0	26

#	Article	IF	CITATIONS
55	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175.	24.0	103
56	Amorphous/Crystalline Heterostructured Cobaltâ€Vanadiumâ€Iron (Oxy)hydroxides for Highly Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2020, 10, 2002215.	19.5	198
57	Strain-Engineering of Bi ₁₂ O ₁₇ Br ₂ Nanotubes for Boosting Photocatalytic CO ₂ Reduction. , 2020, 2, 1025-1032.		82
58	Bifunctional Electrocatalyst with 0D/2D Heterostructure for Highly Efficient Hydrogen and Oxygen Generation. Chemistry - an Asian Journal, 2020, 15, 2892-2899.	3.3	3
59	Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. Chemistry of Materials, 2020, 32, 10130-10139.	6.7	36
60	Effective enhancement of thermoelectric and mechanical properties of germanium telluride <i>via</i> rhenium-doping. Journal of Materials Chemistry C, 2020, 8, 16940-16948.	5.5	38
61	An Allâ€Organic Dâ€A System for Visible‣ightâ€Driven Overall Water Splitting. Small, 2020, 16, e2003914.	10.0	80
62	Pathways towards high energy aqueous rechargeable batteries. Coordination Chemistry Reviews, 2020, 424, 213521.	18.8	50
63	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	13.7	188
64	Boosting Electrocatalytic Ammonia Production through Mimicking "π Back-Donation― CheM, 2020, 6, 2690-2702.	11.7	88
65	Metallenes: Recent Advances and Opportunities in Energy Storage and Conversion Applications. , 2020, 2, 1148-1172.		64
66	Layered Oxide Cathode for Potassiumâ€ŀon Battery: Recent Progress and Prospective. Small, 2020, 16, e2002700.	10.0	52
67	High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe ₃ by High-Entropy Engineering. Journal of the American Chemical Society, 2020, 142, 15187-15198.	13.7	108
68	Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods, 2020, 4, 2000494.	8.6	146
69	Seï£;C Bonding Promoting Fast and Durable Na ⁺ Storage in Yolk–Shell SnSe ₂ @Seï£;C. Small, 2020, 16, e2002486.	10.0	97
70	Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 18880-18890.	10.3	61
71	Tuning the Electronic Structures of Multimetal Oxide Nanoplates to Realize Favorable Adsorption Energies of Oxygenated Intermediates. ACS Nano, 2020, 14, 17640-17651.	14.6	56
72	Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction. Chemical Research in Chinese Universities, 2020, 36, 410-419.	2.6	27

#	Article	IF	CITATIONS
73	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn‪air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	10.3	41
74	Predicting the state of charge and health of batteries using data-driven machine learning. Nature Machine Intelligence, 2020, 2, 161-170.	16.0	338
75	Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. Small, 2020, 16, e1905885.	10.0	52
76	A New Scalable Preparation of Metal Nanosheets: Potential Applications for Aqueous Znâ€lon Batteries Anode. Advanced Functional Materials, 2020, 30, 2003187.	14.9	46
77	Advances in Thermodynamic-Kinetic Model for Analyzing the Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 8597-8610.	11.2	89
78	Hydrophilic engineering of VO _x -based nanosheets for ambient electrochemical ammonia synthesis at neutral pH. Journal of Materials Chemistry A, 2020, 8, 5913-5918.	10.3	35
79	NiAg _{0.4} 3D porous nanoclusters with epitaxial interfaces exhibiting Pt like activity towards hydrogen evolution in alkaline medium. Nanoscale, 2020, 12, 8432-8442.	5.6	14
80	V ₄ C ₃ T <i>_{<i>x</i>}</i> MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InformaÄnÃ- Materiály, 2020, 2, 950-959.	17.3	85
81	Ultrathin Amorphous Nickel Doped Cobalt Phosphates with Highly Ordered Mesoporous Structures as Efficient Electrocatalyst for Oxygen Evolution Reaction. Small, 2020, 16, e1906766.	10.0	50
82	Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 3658-3666.	10.3	119
83	Origin of High Thermoelectric Performance in Earth-Abundant Phosphide–Tetrahedrite. ACS Applied Materials & Interfaces, 2020, 12, 9150-9157.	8.0	35
84	Interface and valence modulation on scalable phosphorene/phosphide lamellae for efficient water electrolysis. Chemical Engineering Journal, 2020, 395, 124976.	12.7	65
85	Oxygen doped MoS2 quantum dots for efficient electrocatalytic hydrogen generation. Journal of Chemical Physics, 2020, 152, 134704.	3.0	17
86	Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chemical Communications, 2020, 56, 5779-5782.	4.1	48
87	Efficient Nitrate Synthesis via Ambient Nitrogen Oxidation with Ruâ€Doped TiO ₂ /RuO ₂ Electrocatalysts. Advanced Materials, 2020, 32, e2002189.	21.0	125
88	Embracing high performance potassium-ion batteries with phosphorus-based electrodes: a review. Nanoscale, 2019, 11, 15402-15417.	5.6	59
89	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K _{2.5} Bi _{8.5} Se ₁₄ . Chemistry of Materials, 2019, 31, 5943-5952.	6.7	25
90	Local nanostructures enhanced the thermoelectric performance of n-type PbTe. Journal of Materials Chemistry A, 2019, 7, 18458-18467.	10.3	53

#	Article	IF	CITATIONS
91	Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 2019, 397, 138-167.	18.8	164
92	MXeneâ€Based Nanocomposites: Surface Modified MXeneâ€Based Nanocomposites for Electrochemical Energy Conversion and Storage (Small 25/2019). Small, 2019, 15, 1970133.	10.0	5
93	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	14.6	171
94	Amorphous Fe–Ni–P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2019, 13, 12969-12979.	14.6	151
95	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe- <i>x</i> GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177.	13.7	76
96	Surface treated nickel phosphide nanosheet with oxygen as highly efficient bifunctional electrocatalysts for overall water splitting. Applied Surface Science, 2019, 496, 143741.	6.1	7
97	Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow betteries. Carbon, 2019, 155, 176-185.	10.3	42
98	Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 783-790.	10.3	115
99	Investigation of Reactant Conversion in the Vanadium Redox Flow Battery Using Spatially Resolved State of Charge Mapping. Batteries, 2019, 5, 2.	4.5	7
100	Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. Journal of Materials Chemistry A, 2019, 7, 5209-5213.	10.3	89
101	Scalable synthesis of a foam-like FeS ₂ nanostructure by a solution combustion–sulfurization process for high-capacity sodium-ion batteries. Nanoscale, 2019, 11, 178-184.	5.6	40
102	Utilization of biomass pectin polymer to build high efficiency electrode architectures with sturdy construction and fast charge transfer structure to boost sodium storage performance for NASICON-type cathode. Journal of Materials Chemistry A, 2019, 7, 1548-1555.	10.3	20
103	Tailoring of Metal Boride Morphology via Anion for Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1901503.	19.5	79
104	Bioinspired Controlled Synthesis of NiSe/Ni ₂ P Nanoparticles Decorated 3D Porous Carbon for Li/Na Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 13217-13225.	6.7	55
105	Highly anisotropic thermoelectric properties of black phosphorus crystals. 2D Materials, 2019, 6, 045009.	4.4	33
106	Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 256, 117854.	20.2	271
107	Surface Modified MXeneâ€Based Nanocomposites for Electrochemical Energy Conversion and Storage. Small, 2019, 15, e1901503.	10.0	159
108	High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy, 2019, 62, 94-102.	16.0	209

#	Article	IF	CITATIONS
109	Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today, 2019, 25, 99-121.	11.9	274
110	Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. Journal of the American Chemical Society, 2019, 141, 6403-6412.	13.7	67
111	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research, 2019, 12, 1347-1353.	10.4	95
112	Synergy of Nb Doping and Surface Alloy Enhanced on Water–Alkali Electrocatalytic Hydrogen Generation Performance in Tiâ€Based MXene. Advanced Science, 2019, 6, 1900116.	11.2	97
113	High Thermoelectric Performance in Polycrystalline SnSe Via Dualâ€Doping with Ag/Na and Nanostructuring With Ag ₈ SnSe ₆ . Advanced Energy Materials, 2019, 9, 1803072.	19.5	98
114	Facile Synthesis of Amorphous Ternary Metal Borides–Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 846-855.	8.0	67
115	Lithiation-Induced Non-Noble Metal Nanoparticles for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 811-818.	8.0	16
116	Highly Efficient and Stable Hydrogen Production in All pH Range by Two-Dimensional Structured Metal-Doped Tungsten Semicarbides. Research, 2019, 2019, 4029516.	5.7	35
117	In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Science Advances, 2018, 4, eaap7970.	10.3	176
118	Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 2018, 47, 257-265.	16.0	122
119	Few-layer NiPS ₃ nanosheets as bifunctional materials for Li-ion storage and oxygen evolution reaction. Nanoscale, 2018, 10, 4890-4896.	5.6	82
120	Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2018, 14, 1703257.	10.0	279
121	Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries. Journal of Materials Chemistry A, 2018, 6, 6625-6632.	10.3	79
122	Fe ₂ O ₃ /SnSSe Hexagonal Nanoplates as Lithium-Ion Batteries Anode. ACS Applied Materials & Interfaces, 2018, 10, 12722-12730.	8.0	52
123	Constructing Multifunctional Heterostructure of Fe ₂ O ₃ @Ni ₃ Se ₄ Nanotubes. Small, 2018, 14, e1704065.	10.0	50
124	1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Materials, 2018, 10, 48-55.	18.0	221
125	Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium–Ion Batteries. Small, 2018, 14, 1702770.	10.0	70
126	Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Composites Part A: Applied Science and Manufacturing, 2018, 105, 203-213.	7.6	125

#	Article	IF	CITATIONS
127	nâ€Type SnSe ₂ Orientedâ€Nanoplateâ€Based Pellets for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1702167.	19.5	103
128	Graphene-supported bimetal phosphorus trisulfides as novel 0D–2D nanohybrid for high rate Li-ion storage. Journal of Energy Chemistry, 2018, 27, 190-194.	12.9	12
129	Nano-confined CoSe2/Mo2C nanoparticles encapsulated into porous carbon nanofibers for superior lithium and sodium storage. Materials Today Energy, 2018, 10, 317-324.	4.7	18
130	Thermoelectric Performance: Enhancement of Thermoelectric Performance in CuSbSe 2 Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization (Small) Tj ETQq0 0 0 rg	gBīTo/.Overl	ock 10 Tf 50
131	Asymmetric-Layered Tin Thiophosphate: An Emerging 2D Ternary Anode for High-Performance Sodium Ion Full Cell. ACS Nano, 2018, 12, 12902-12911.	14.6	45
132	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	27.0	65
133	Porous MXene Frameworks Support Pyrite Nanodots toward High-Rate Pseudocapacitive Li/Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 33779-33784.	8.0	61
134	O2 plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy, 2018, 54, 82-90.	16.0	116
135	CoSe ₂ -Decorated NbSe ₂ Nanosheets Fabricated via Cation Exchange for Li Storage. ACS Applied Materials & Interfaces, 2018, 10, 37773-37778.	8.0	18
136	Enhancement of Thermoelectric Performance in CuSbSe ₂ Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization. Small, 2018, 14, e1803092.	10.0	17
137	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075.	14.9	57
138	A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements. Applied Energy, 2018, 230, 974-982.	10.1	55
139	Controlled synthesis of nickel carbide nanoparticles and their application in lithium storage. Chemical Engineering Journal, 2018, 352, 940-946.	12.7	13
140	Selfâ€Assemble and In Situ Formation of Ni _{1â^'} <i>_x</i> Fe <i>_x</i> PS ₃ Nanomosaicâ€Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1801127.	19.5	204
141	Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 15710-15717.	10.3	137
142	Performance-improved Li-O ₂ batteries by tailoring the phases of Mo _x C porous nanorods as an efficient cathode. Nanoscale, 2018, 10, 14877-14884.	5.6	28

143	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe. Energy and Environmental Science, 2018, 11, 3220-3230.	30.8	115	
144	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured nâ€Type	14.9	92	

144 PbTe–GeTe. Advanced Functional Materials, 2018, 28, 1801617. 14.9 92

#	Article	IF	CITATIONS
145	Co ₉ S ₈ /MoS ₂ Yolk–Shell Spheres for Advanced Li/Na Storage. Small, 2017, 13, 1603490.	10.0	162
146	From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries. Nano Energy, 2017, 33, 168-176.	16.0	51
147	Liâ€lon Batteries: Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure (Adv. Energy Mater. 2/2017). Advanced Energy Materials, 2017, 7, .	19.5	0
148	Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework for Anode Material in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17172-17177.	8.0	89
149	Advanced Cathode Materials for Sodiumâ€lon Batteries: What Determines Our Choices?. Small Methods, 2017, 1, 1700098.	8.6	179
150	Tunable Co ₃ O ₄ hollow structures (from yolk–shell to multi-shell) and their Li storage properties. Journal of Materials Chemistry A, 2017, 5, 12757-12761.	10.3	39
151	3D ordered porous Mo _x C (x = 1 or 2) for advanced hydrogen evolution and Li storage. Nanoscale, 2017, 9, 7260-7267.	5.6	58
152	Highâ€Energy/Power and Lowâ€Temperature Cathode for Sodiumâ€Ion Batteries: In Situ XRD Study and Superior Fullâ€Cell Performance. Advanced Materials, 2017, 29, 1701968.	21.0	350
153	Fabrication of High Energy Li–Ion Capacitors from Orange Peel Derived Porous Carbon. ChemistrySelect, 2017, 2, 5051-5058.	1.5	17
154	β o(OH) ₂ Nanosheets: A Superior Pseudocapacitive Electrode for Highâ€Energy Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 2127-2133.	3.3	40
155	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	10.0	139
156	FeS–ZnS Composite Nanosheets for Enhanced Lithium Storage Properties. ChemNanoMat, 2017, 3, 420-427.	2.8	6
157	Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting. ACS Nano, 2017, 11, 11031-11040.	14.6	297
158	Recent advances in printable secondary batteries. Journal of Materials Chemistry A, 2017, 5, 22442-22458.	10.3	50
159	NbS ₂ Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li ⁺ and Na ⁺ Storage. ACS Nano, 2017, 11, 10599-10607.	14.6	95
160	Sâ€Doped TiSe ₂ Nanoplates/Fe ₃ O ₄ Nanoparticles Heterostructure. Small, 2017, 13, 1702181.	10.0	27
161	Nonaqueous Hybrid Lithiumâ€lon and Sodiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1702093.	21.0	699
162	Scalable synthesis of SnS ₂ /S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale, 2017, 9, 14820-14825.	5.6	94

#	Article	IF	CITATIONS
163	Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy, 2017, 40, 576-586.	16.0	95
164	Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries. Nano Research, 2017, 10, 4266-4273.	10.4	7
165	Investigation on electrochemical behaviors of NiCo ₂ O ₄ battery-type supercapacitor electrodes: the role of an aqueous electrolyte. Inorganic Chemistry Frontiers, 2017, 4, 1642-1648.	6.0	172
166	Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Advanced Functional Materials, 2017, 27, 1702317.	14.9	339
167	Feâ€Doped Ni ₃ C Nanodots in Nâ€Doped Carbon Nanosheets for Efficient Hydrogenâ€Evolution and Oxygenâ€Evolution Electrocatalysis. Angewandte Chemie, 2017, 129, 12740-12744.	2.0	48
168	Designing hybrid architectures for advanced thermoelectric materials. Materials Chemistry Frontiers, 2017, 1, 2457-2473.	5.9	34
169	Feâ€Doped Ni ₃ C Nanodots in Nâ€Doped Carbon Nanosheets for Efficient Hydrogenâ€Evolution and Oxygenâ€Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 12566-12570.	13.8	324
170	Scalable Synthesis of Honeycomblike V ₂ O ₅ /Carbon Nanotube Networks as Enhanced Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42438-42443.	8.0	23
171	General and Scalable Solidâ€5tate Synthesis of 2D MPS ₃ (M = Fe, Co, Ni) Nanosheets and Tuning Their Li/Na Storage Properties. Small Methods, 2017, 1, 1700304.	8.6	90
172	Alloyâ€Based Anode Materials toward Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700622.	21.0	613
173	Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure. Advanced Energy Materials, 2017, 7, 1601285.	19.5	149
174	Synergistic Effect of Mesoporous Co ₃ O ₄ Nanowires Confined by N-Doped Graphene Aerogel for Enhanced Lithium Storage. Small, 2016, 12, 3849-3860.	10.0	80
175	An Airâ€ S table Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600453.	19.5	167
176	Lithium Storage: An Air-Stable Densely Packed Phosphorene-Graphene Composite Toward Advanced Lithium Storage Properties (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	19.5	2
177	A Highâ€Energy Lithiumâ€Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridineâ€Derived Porous Nitrogenâ€Doped Carbon Cathode. Advanced Functional Materials, 2016, 26, 3082-3093.	14.9	330
178	A Facile Process for the Preparation of Threeâ€Dimensional Hollow Zn(OH) ₂ Nanoflowers at Room Temperature. Chemistry - A European Journal, 2016, 22, 11143-11147.	3.3	7
179	Wetâ€Chemical Processing of Phosphorus Composite Nanosheets for Highâ€Rate and Highâ€Capacity Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1502409.	19.5	211
180	Diffusion induced concave Co3O4@CoFe2O4 hollow heterostructures for high performance lithium ion battery anode. Energy Storage Materials, 2016, 4, 145-153.	18.0	50

#	Article	IF	CITATIONS
181	Cobalt silicate hierarchical hollow spheres for lithium-ion batteries. Nanotechnology, 2016, 27, 365401.	2.6	21
182	Recent Advancements in Allâ€Vanadium Redox Flow Batteries. Advanced Materials Interfaces, 2016, 3, 1500309.	3.7	351
183	Bioinspired Synthesis of Hierarchically Porous MoO ₂ /Mo ₂ C Nanocrystal Decorated N-Doped Carbon Foam for Lithium–Oxygen Batteries. Chemistry of Materials, 2016, 28, 5743-5752.	6.7	96
184	Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe ₂) Nanoplates for Superior Li/Na Ion Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 25261-25267.	8.0	185
185	High energy Li-ion capacitors with conversion type Mn ₃ O ₄ particulates anchored to few layer graphene as the negative electrode. Journal of Materials Chemistry A, 2016, 4, 15134-15139.	10.3	39
186	Atomic Layer Deposition of Amorphous TiO ₂ on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties. Advanced Materials Interfaces, 2016, 3, 1600375.	3.7	75
187	Vanadium Carbide Based Composite for High Performance Oxygen Reduction Reaction and Lithium Ion Batteries. ChemistrySelect, 2016, 1, 2682-2686.	1.5	13
188	A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horizons, 2016, 1, 496-501.	8.0	51
189	Charge Transport, Mechanical and Storage Performances of Sepiolite Based Composite Polymer Electrolytes. ChemistrySelect, 2016, 1, 5821-5827.	1.5	6
190	Carbon-Free Porous Zn ₂ GeO ₄ Nanofibers as Advanced Anode Materials for High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31722-31728.	8.0	26
191	Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30, 630-638.	16.0	78
192	Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability. ACS Applied Materials & Interfaces, 2016, 8, 16932-16938.	8.0	64
193	2D Transition Metal Oxides/Hydroxides for Energyâ€Storage Applications. ChemNanoMat, 2016, 2, 562-577.	2.8	113
194	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865.	10.0	101
195	From fibrous elastin proteins to one-dimensional transition metal phosphides and their applications. Journal of Materials Chemistry A, 2016, 4, 10893-10899.	10.3	26
196	Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers. Nano Research, 2016, 9, 2520-2530.	10.4	12
197	Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage. Nano Energy, 2016, 21, 71-79.	16.0	49
198	A surfactant-thermal method to prepare crystalline thioantimonate for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 111-116.	6.0	32

#	Article	IF	CITATIONS
199	Nitrogen doped carbon nanotubes encapsulated MnO nanoparticles derived from metal coordination polymer towards high performance Lithium-ion Battery Anodes. Electrochimica Acta, 2016, 187, 406-412.	5.2	47
200	Using elastin protein to develop highly efficient air cathodes for lithium-O2batteries. Nanotechnology, 2016, 27, 045401.	2.6	5
201	Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Research, 2016, 9, 612-621.	10.4	106
202	In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 7790-7799.	8.0	167
203	Controllable Codoping of Nitrogen and Sulfur in Graphene for Highly Efficient Li-Oxygen Batteries and Direct Methanol Fuel Cells. Chemistry of Materials, 2016, 28, 1737-1745.	6.7	132
204	Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy, 2016, 22, 583-593.	16.0	112
205	Metal coordination polymer derived mesoporous Co ₃ O ₄ nanorods with uniform TiO ₂ coating as advanced anodes for lithium ion batteries. Nanoscale, 2016, 8, 2967-2973.	5.6	74
206	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. Journal of Power Sources, 2016, 307, 17-24.	7.8	23
207	Molten sodium-induced graphitization towards highly crystalline and hierarchical porous graphene frameworks. 2D Materials, 2015, 2, 035016.	4.4	8
208	Energy Storage: Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors (Small 30/2015). Small, 2015, 11, 3720-3720.	10.0	3
209	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for Highâ€Energy Supercapacitors. Small, 2015, 11, 4123-4129.	10.0	164
210	Hydrophilic Nitrogen and Sulfur Coâ€doped Molybdenum Carbide Nanosheets for Electrochemical Hydrogen Evolution. Small, 2015, 11, 6278-6284.	10.0	168
211	Reduced Graphene Oxideâ€Wrapped MoO ₃ Composites Prepared by Using Metal–Organic Frameworks as Precursor for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Materials, 2015, 27, 4695-4701.	21.0	388
212	Vanadium Pentoxideâ€Based Cathode Materials for Lithiumâ€Ion Batteries: Morphology Control, Carbon Hybridization, and Cation Doping. Particle and Particle Systems Characterization, 2015, 32, 276-294.	2.3	69
213	Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain. PLoS ONE, 2015, 10, e0140953.	2.5	3
214	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	5.6	134
215	Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with Highâ€Capacity. Advanced Energy Materials, 2015, 5, 1402189.	19.5	253
216	A General Strategy toward Carbon Clothâ€Based Hierarchical Films Constructed by Porous Nanosheets for Superior Photocatalytic Activity. Small, 2015, 11, 2429-2436.	10.0	30

#	Article	IF	CITATIONS
217	MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 8483-8488.	10.3	178
218	Vanadium-based nanostructure materials for secondary lithium battery applications. Nanoscale, 2015, 7, 14595-14607.	5.6	93
219	3D Cu-doped CoS porous nanosheet films as superior counterelectrodes for quantum dot-sensitized solar cells. Nano Energy, 2015, 16, 163-172.	16.0	42
220	Copper oxide supported on platinum nanosheets array: High performance carbon-free cathode for lithium–oxygen cells. Journal of Power Sources, 2015, 294, 377-385.	7.8	17
221	Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19738-19746.	10.3	135
222	Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. Journal of Power Sources, 2015, 295, 323-328.	7.8	180
223	Solution-based fabrication of VO ₂ (M) nanoparticles via lyophilisation. RSC Advances, 2015, 5, 25669-25675.	3.6	24
224	Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 11462-11470.	10.3	113
225	Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes. ACS Nano, 2015, 9, 4628-4635.	14.6	102
226	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy, 2015, 13, 718-726.	16.0	48
227	Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors. Small, 2015, 11, 3694-3702.	10.0	243
228	Controlled synthesis of high-performance β-FeOOH anodes for lithium-ion batteries and their size effects. Nano Energy, 2015, 13, 397-404.	16.0	49
229	Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angewandte Chemie - International Edition, 2015, 54, 7354-7358.	13.8	234
230	Inâ€Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2015, 27, 3038-3044.	21.0	620
231	An Advanced Sodiumâ€lon Battery Composed of Carbon Coated Na ₃ V ₂ (PO ₄) ₃ in a Porous Graphene Network. Advanced Materials, 2015, 27, 6670-6676.	21.0	448
232	Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. ACS Nano, 2015, 9, 11371-11381.	14.6	257
233	A crystalline Cu–Sn–S framework for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 19410-19416.	10.3	60
234	Integrating three-dimensional graphene/Fe ₃ O ₄ @C composite and mesoporous Co(OH) ₂ nanosheets arrays/graphene foam into a superior asymmetric electrochemical capacitor. RSC Advances, 2015, 5, 88191-88201.	3.6	19

#	Article	IF	CITATIONS
235	General Approach for MOF-Derived Porous Spinel AFe ₂ O ₄ Hollow Structures and Their Superior Lithium Storage Properties. ACS Applied Materials & Interfaces, 2015, 7, 26751-26757.	8.0	133
236	<i>In Situ</i> Integration of Anisotropic SnO ₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 26085-26093.	8.0	27
237	Liquidâ€Phase Epitaxial Growth of Twoâ€Dimensional Semiconductor Heteroâ€nanostructures. Angewandte Chemie - International Edition, 2015, 54, 1841-1845.	13.8	88
238	Superior Lithium Storage Properties of βâ€FeOOH. Advanced Energy Materials, 2015, 5, 1401517.	19.5	56
239	Effect of Bromine Complexing Agents on the Performance of Cation Exchange Membranes in Secondâ€Generation Vanadium Bromide Battery. ChemPlusChem, 2015, 80, 376-381.	2.8	19
240	Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices. Journal of Power Sources, 2015, 274, 310-317.	7.8	15
241	Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. Journal of Power Sources, 2015, 274, 846-850.	7.8	97
242	Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. Journal of Power Sources, 2015, 274, 755-761.	7.8	114
243	Microemulsionâ€Assisted Synthesis of Nanosized LiMnO Spinel Cathodes for Highâ€Rate Lithiumâ€lon Batteries. ChemPlusChem, 2014, 79, 1794-1798.	2.8	1
244	An Interwoven Network of MnO ₂ Nanowires and Carbon Nanotubes as the Anode for Bendable Lithiumâ€ion Batteries. ChemPhysChem, 2014, 15, 2445-2449.	2.1	22
245	A novel hollowed CoO-in-CoSnO ₃ nanostructure with enhanced lithium storage capabilities. Nanoscale, 2014, 6, 13824-13830.	5.6	52
246	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	19.5	398
247	Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage. Journal of Power Sources, 2014, 250, 160-165.	7.8	20
248	MS ₂ (M = Co and Ni) Hollow Spheres with Tunable Interiors for Highâ€Performance Supercapacitors and Photovoltaics. Advanced Functional Materials, 2014, 24, 2155-2162.	14.9	398
249	Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16526-16535.	3.1	102
250	Synthesis of Porous, Hollow Metal MCO ₃ (M=Mn, Co, Ca) Microstructures and Adsorption Properties Thereof. Chemistry - A European Journal, 2014, 20, 421-425.	3.3	29
251	Graphene and Grapheneâ€Based Materials for Energy Storage Applications. Small, 2014, 10, 3480-3498.	10.0	653
252	Aqueous-Based Chemical Route toward Ambient Preparation of Multicomponent Core–Shell Nanotubes. ACS Nano, 2014, 8, 4004-4014.	14.6	37

#	Article	IF	CITATIONS
253	Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 2014, 258, 19-38.	7.8	284
254	Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. Journal of Membrane Science, 2014, 450, 313-322.	8.2	152
255	Ultrathin S-doped MoSe ₂ nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 5597-5601.	10.3	317
256	Fabrication of Flexible Thermoelectric Thin Film Devices by Inkjet Printing. Small, 2014, 10, 3551-3554.	10.0	219
257	Compressed hydrogen gas-induced synthesis of Au–Pt core–shell nanoparticle chains towards high-performance catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 10676-10681.	10.3	37
258	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	13.8	252
259	Integrated Charge Transfer in Colloidal Cu–MnO Heterostructures for High-Performance Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 17452-17460.	3.1	12
260	Platinum and Palladium Nanotubes Based on Genetically Engineered Elastin–Mimetic Fusion Proteinâ€Fiber Templates: Synthesis and Application in Lithiumâ€O ₂ Batteries. Chemistry - an Asian Journal, 2014, 9, 2555-2559.	3.3	8
261	High-performance hybrid electrochemical capacitor with binder-free Nb ₂ O ₅ @graphene. RSC Advances, 2014, 4, 37389.	3.6	71
262	Carbon Nanotubeâ€Encapsulated Noble Metal Nanoparticle Hybrid as a Cathode Material for Liâ€Oxygen Batteries. Advanced Functional Materials, 2014, 24, 6516-6523.	14.9	157
263	Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphates with Highly Ordered Mesoporous Structures for Lithiumâ€Ion Battery Applications. Angewandte Chemie - International Edition, 2014, 53, 9352-9355.	13.8	128
264	Fe-Based Metallopolymer Nanowall-Based Composites for Li–O ₂ Battery Cathode. ACS Applied Materials & Interfaces, 2014, 6, 7164-7170.	8.0	9
265	Hollow Spheres: MS2(M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics (Adv. Funct. Mater. 15/2014). Advanced Functional Materials, 2014, 24, 2154-2154.	14.9	14
266	High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 2014, 7, 1232-1240.	10.4	211
267	n-Type Carbon Nanotubes/Silver Telluride Nanohybrid Buckypaper with a High-Thermoelectric Figure of Merit. ACS Applied Materials & Interfaces, 2014, 6, 4940-4946.	8.0	60
268	Recycling Bacteria for the Synthesis of LiMPO ₄ (M = Fe, Mn) Nanostructures for Highâ€Power Lithium Batteries. Small, 2014, 10, 3997-4002.	10.0	11
269	Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6, 9889-9924.	5.6	888
270	Metal Oxideâ€Coated Threeâ€Dimensional Graphene Prepared by the Use of Metal–Organic Frameworks as Precursors. Angewandte Chemie - International Edition, 2014, 53, 1404-1409.	13.8	287

#	Article	IF	CITATIONS
271	Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556.	5.6	77
272	One novel and universal method to prepare transition metal nitrides doped graphene anodes for Li-ion battery. Electrochimica Acta, 2014, 134, 28-34.	5.2	41
273	Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014, 3, 134-143.	16.0	72
274	Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nanoinclusions by pulsed laser deposition. Nano Energy, 2014, 8, 223-230.	16.0	46
275	Zeolitic Imidazolate Framework 67â€Đerived High Symmetric Porous Co ₃ O ₄ Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability. Small, 2014, 10, 1932-1938.	10.0	442
276	Hollow Nanospheres Constructed by CoS ₂ Nanosheets with a Nitrogenâ€Dopedâ€Carbon Coating for Energyâ€Storage and Photocatalysis. ChemSusChem, 2014, 7, 2212-2220.	6.8	96
277	Binder-free graphene foams for O2 electrodes of Li–O2 batteries. Nanoscale, 2013, 5, 9651.	5.6	103
278	Functionalized single-walled carbon nanotubes with enhanced electrocatalytic activity for <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mtext>Br</mml:mtext></mml:mrow><mml:mrov redox reactions in van. Carbon, 2013, 64, 464-471.</mml:mrov </mml:msup></mml:mrow></mml:math>	10.3 w>≤mml:r	45 no>-
279	Carbon buffered-transition metal oxidenanoparticle–graphene hybrid nanosheets as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 6901-6907.	10.3	28
280	In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chemical Communications, 2013, 49, 10178.	4.1	384
281	Solvothermal-Induced Conversion of One-Dimensional Multilayer Nanotubes to Two-Dimensional Hydrophilic VO _{<i>x</i>} Nanosheets: Synthesis and Water Treatment Application. ACS Applied Materials & Interfaces, 2013, 5, 10389-10394.	8.0	14
282	H2O–EG-Assisted Synthesis of Uniform Urchinlike Rutile TiO2 with Superior Lithium Storage Properties. ACS Applied Materials & Interfaces, 2013, 5, 9998-10003.	8.0	32
283	Building 3D Structures of Vanadium Pentoxide Nanosheets and Application as Electrodes in Supercapacitors. Nano Letters, 2013, 13, 5408-5413.	9.1	343
284	Synthesis of Cobalt Phosphides and Their Application as Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 1093-1099.	8.0	178
285	Multiwalled carbon nanotubes–V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 15459.	10.3	67
286	Growth of two-dimensional ultrathin anatase TiO2 nanoplatelets on graphene for high-performance lithium-ion battery. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	10
287	Amorphous Iron Oxyhydroxide Nanosheets: Synthesis, Li Storage, and Conversion Reaction Kinetics. Journal of Physical Chemistry C, 2013, 117, 17462-17469.	3.1	27
288	Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte. Electrochimica Acta, 2013, 105, 447-454.	5.2	23

#	Article	IF	CITATIONS
289	Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. Journal of Materials Chemistry A, 2013, 1, 7630.	10.3	108
290	High-Performance Supercapacitor Electrodes Based on Graphene Achieved by Thermal Treatment with the Aid of Nitric Acid. ACS Applied Materials & amp; Interfaces, 2013, 5, 9656-9662.	8.0	87
291	Fe3O4 nanoparticle chains with N-doped carbon coating: magnetotactic bacteria assisted synthesis and high-rate lithium storage. RSC Advances, 2013, 3, 14960.	3.6	21
292	Aqueous solution synthesis of (Sb, Bi)2(Te, Se)3 nanocrystals with controllable composition and morphology. Journal of Materials Chemistry C, 2013, 1, 6271.	5.5	16
293	Immobilization of plant polyphenol stabilized-Sn nanoparticles onto carbon nanotubes and their application in rechargeable lithium ion batteries. RSC Advances, 2013, 3, 5310.	3.6	13
294	Rapid fabrication of a novel Sn–Ge alloy: structure–property relationship and its enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 14577.	10.3	47
295	Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. Journal of Power Sources, 2013, 222, 97-102.	7.8	128
296	Facile synthesis of Cu7Te4 nanorods and the enhanced thermoelectric properties of Cu7Te4–Bi0.4Sb1.6Te3 nanocomposites. Nano Energy, 2013, 2, 4-11.	16.0	34
297	Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. Journal of Materials Chemistry A, 2013, 1, 82-88.	10.3	138
298	A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 1456.	5.6	177
299	Ultrathin V ₂ O ₅ nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale, 2013, 5, 556-560.	5.6	236
300	Synthesis of Porous Amorphous FePO ₄ Nanotubes and Their Lithium Storage Properties. Chemistry - A European Journal, 2013, 19, 1568-1572.	3.3	33
301	A simple process to prepare nitrogen-modified few-layer graphene for a supercapacitor electrode. Carbon, 2013, 57, 184-190.	10.3	83
302	Facile Preparation of Ordered Porous Graphene–Metal Oxide@C Binderâ€Free Electrodes with High Li Storage Performance. Small, 2013, 9, 3390-3397.	10.0	62
303	Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm, 2013, 15, 1922.	2.6	90
304	Visible Photoresponse of Single‣ayer Graphene Decorated with TiO ₂ Nanoparticles. Small, 2013, 9, 2076-2080.	10.0	58
305	Controlled Synthesis of Manganese Oxyhydroxide Nanotubes: Implications for Highâ€Efficiency Supercapacitors. ChemPlusChem, 2013, 78, 554-560.	2.8	10
306	Preparation of MoS ₂ â€Coated Threeâ€Dimensional Graphene Networks for Highâ€Performance Anode Material in Lithiumâ€ion Batteries. Small, 2013, 9, 3433-3438.	10.0	542

#	Article	IF	CITATIONS
307	Oriented Molecular Attachments Through Sol–Gel Chemistry for Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets and Their Applications. Small, 2013, 9, 716-721.	10.0	67
308	Synthesis of Single rystalline LiMn ₂ O ₄ and LiMn _{1.5} Ni _{0.5} O ₄ Nanocrystals and Their Lithium Storage Properties. ChemPlusChem, 2013, 78, 218-221.	2.8	14
309	Olivine-Type Nanosheets for Lithium Ion Battery Cathodes. ACS Nano, 2013, 7, 5637-5646.	14.6	210
310	Coaxial Fe3O4/CuO hybrid nanowires as ultra fast charge/discharge lithium-ion battery anodes. Journal of Materials Chemistry A, 2013, 1, 8672.	10.3	76
311	Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy and Environmental Science, 2013, 6, 987.	30.8	404
312	Colloidal CuInSe ₂ Nanocrystals: From Gradient Stoichiometry toward Homogeneous Alloyed Structure Mediated by Conducting Polymer P3HT. ACS Applied Materials & Interfaces, 2013, 5, 4100-4106.	8.0	12
313	Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale, 2013, 5, 4937.	5.6	161
314	Controlled Synthesis of Doubleâ€Wall <i>aâ€</i> FePO ₄ Nanotubes and their LIB Cathode Properties. Small, 2013, 9, 1036-1041.	10.0	25
315	One-step synthesis of Ni ₃ S ₂ nanorod@Ni(OH) ₂ nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2216-2221.	30.8	554
316	Threeâ€Ðimensional Graphene Network Composites for Detection of Hydrogen Peroxide. Small, 2013, 9, 1703-1707.	10.0	107
317	Genome-Wide Analyses of Amphioxus MicroRNAs Reveal an Immune Regulation via miR-92d Targeting C3. Journal of Immunology, 2013, 190, 1491-1500.	0.8	27
318	A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes. Nanotechnology, 2012, 23, 425502.	2.6	35
319	Design of Nanostructured Hybrid Materials Based on Carbon and Metal Oxides for Li Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 26685-26693.	3.1	77
320	Cationic quaternary chalcohalide nanobelts: Hg4In2Q3Cl8 (Q = S, Se, Te). RSC Advances, 2012, 2, 6401.	3.6	10
321	A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nature Communications, 2012, 3, 1177.	12.8	368
322	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale, 2012, 4, 293-297.	5.6	185
323	Oxidation-Etching Preparation of MnO ₂ Tubular Nanostructures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2012, 4, 2769-2774.	8.0	139
324	In situ formation of new organic ligands to construct two novel self-charge-transfer Pb(ii)-based frameworks. CrystEngComm, 2012, 14, 75-78.	2.6	22

#	Article	IF	CITATIONS
325	Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode. RSC Advances, 2012, 2, 3630.	3.6	91
326	One-pot synthesis of carbon-coated VO ₂ (B) nanobelts for high-rate lithium storage. RSC Advances, 2012, 2, 1174-1180.	3.6	81
327	Fe2O3 nanocluster-decorated graphene as O2 electrode for high energy Li–O2 batteries. RSC Advances, 2012, 2, 8508.	3.6	59
328	Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods. Nanoscale, 2012, 4, 3926.	5.6	45
329	Flexible carbon nanotube papers with improved thermoelectric properties. Energy and Environmental Science, 2012, 5, 5364-5369.	30.8	164
330	Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries. Journal of Power Sources, 2012, 214, 171-177.	7.8	112
331	An Effective Method for the Fabrication of Fewâ€Layerâ€Thick Inorganic Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 9052-9056.	13.8	520
332	Synthesis, Crystal Structure, and Optical Properties of a Three-Dimensional Quaternary Hg–In–S–Cl Chalcohalide: Hg ₇ InS ₆ S5. Inorganic Chemistry, 2012, 51, 4414-4416.	4.0	37
333	Controlled Soft-Template Synthesis of Ultrathin C@FeS Nanosheets with High-Li-Storage Performance. ACS Nano, 2012, 6, 4713-4721.	14.6	293
334	Synthesis of hexagonal-symmetry α-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties. CrystEngComm, 2012, 14, 147-153.	2.6	49
335	Graphene oxide nanosheets/polymer binders as superior electrocatalytic materials for vanadium bromide redox flow batteries. Electrochimica Acta, 2012, 85, 175-181.	5.2	38
336	Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Materials, 2012, 4, e30-e30.	7.9	137
337	A facile approach toward transition metal oxide hierarchical structures and their lithium storage properties. Nanoscale, 2012, 4, 3718.	5.6	58
338	One-step electrochemical preparation of graphene-based heterostructures for Li storage. Journal of Materials Chemistry, 2012, 22, 8455.	6.7	75
339	Crystal Structure and Phototransistor Behavior of N-Substituted Heptacence. ACS Applied Materials & Interfaces, 2012, 4, 1883-1886.	8.0	118
340	Controlled Synthesis of Carbon-Coated Cobalt Sulfide Nanostructures in Oil Phase with Enhanced Li Storage Performances. ACS Applied Materials & Interfaces, 2012, 4, 2999-3006.	8.0	137
341	Thermoelectric Bi ₂ Te ₃ -improved charge collection for high-performance dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 6294-6298.	30.8	77
342	HTS-PEG: A Method for High Throughput Sequencing of the Paired-Ends of Genomic Libraries. PLoS ONE, 2012, 7, e52257.	2.5	1

#	Article	IF	CITATIONS
343	A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries. Beilstein Journal of Nanotechnology, 2012, 3, 513-523.	2.8	28
344	Engineering "Hot―Nanoparticles for Surfaceâ€Enhanced Raman Scattering by Embedding Reporter Molecules in Metal Layers. Small, 2012, 8, 246-251.	10.0	128
345	One‣tep Solvothermal Synthesis of Singleâ€Crystalline TiOF ₂ Nanotubes with High Lithiumâ€Ion Battery Performance. Chemistry - A European Journal, 2012, 18, 4026-4030.	3.3	31
346	Synthesis of Cu _{<i>x</i>} S/Cu Nanotubes and Their Lithium Storage Properties. Journal of Physical Chemistry C, 2012, 116, 12468-12474.	3.1	92
347	In situ growth of Si nanowires on graphene sheets for Li-ion storage. Electrochimica Acta, 2012, 74, 176-181.	5.2	34
348	Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries. Journal of Power Sources, 2012, 201, 288-293.	7.8	38
349	Cermanium nanowires-based carbon composite as anodes for lithium-ion batteries. Journal of Power Sources, 2012, 206, 253-258.	7.8	105
350	Power Factor Enhancement for Few-Layered Graphene Films by Molecular Attachments. Journal of Physical Chemistry C, 2011, 115, 1780-1785.	3.1	38
351	Enhanced electrochemical catalytic activity of new nickel hydroxide nanostructures with (100) facet. CrystEngComm, 2011, 13, 188-192.	2.6	28
352	Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2–Fe2O3/rGO composite nanostructures. Journal of Materials Chemistry, 2011, 21, 12770.	6.7	80
353	Preparation, characterization, physical properties, and photoconducting behaviour of anthracene derivative nanowires. Nanoscale, 2011, 3, 4720.	5.6	46
354	Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes. Chemistry of Materials, 2011, 23, 1032-1038.	6.7	65
355	Template free electrochemical deposition of ZnSb nanotubes for Li ion battery anodes. Chemical Communications, 2011, 47, 9849.	4.1	35
356	Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability. Chemical Communications, 2011, 47, 10383.	4.1	32
357	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
358	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2011, 115, 8400-8406.	3.1	196
359	Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes. Journal of Physical Chemistry C, 2011, 115, 15973-15979.	3.1	50
360	A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy and Environmental Science, 2011, 4, 4954.	30.8	255

#	Article	IF	CITATIONS
361	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale, 2011, 3, 1084-1089.	5.6	352
362	Synthesis of Ultrathin Silicon Nanosheets by Using Graphene Oxide as Template. Chemistry of Materials, 2011, 23, 5293-5295.	6.7	162
363	Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment. ACS Nano, 2011, 5, 2749-2755.	14.6	181
364	Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Advances, 2011, 1, 117.	3.6	82
365	Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale, 2011, 3, 4752.	5.6	155
366	High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 2013-2019.	14.6	340
367	Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME Journal, 2011, 5, 414-426.	9.8	178
368	The formation of a carbon nanotube–graphene oxide core–shell structure and its possible applications. Carbon, 2011, 49, 5071-5078.	10.3	130
369	Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites. Journal of Electronic Materials, 2011, 40, 1018-1023.	2.2	41
370	Grapheneâ€Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.	10.0	2,239
371	Graphene Oxide as a Carbon Source for Controlled Growth of Carbon Nanowires. Small, 2011, 7, 1199-1202.	10.0	75
372	Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 2011, 7, 3163-3168.	10.0	980
373	Bottomâ€Up Preparation of Porous Metalâ€Oxide Ultrathin Sheets with Adjustable Composition/Phases and Their Applications. Small, 2011, 7, 3458-3464.	10.0	55
374	Controlled Synthesis of Ag/Ag/C Hybrid Nanostructures and their Surfaceâ€Enhanced Raman Scattering Properties. Chemistry - A European Journal, 2011, 17, 13386-13390.	3.3	9
375	Controlled CVD growth of Cu–Sb alloy nanostructures. Nanotechnology, 2011, 22, 325602.	2.6	12
376	Stability studies of CdSe nanocrystals in an aqueous environment. Nanotechnology, 2011, 22, 275706.	2.6	14
377	The Evolution and Regulation of the Mucosal Immune Complexity in the Basal Chordate Amphioxus. Journal of Immunology, 2011, 186, 2042-2055.	0.8	55
378	Growth of dandelion-shaped CuInSe ₂ nanostructures by a two-step solvothermal process. Nanotechnology, 2011, 22, 195607.	2.6	23

#	Article	IF	CITATIONS
379	Synthesis of CuInSe ₂ Nanocrystals with Tunable Size by Reverse Microemulsion Method. Journal of Nanoscience and Nanotechnology, 2010, 10, 7519-7521.	0.9	2
380	p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Applied Physics Letters, 2010, 96, .	3.3	135
381	Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010, 3, 643-652.	10.4	534
382	Effects of Pulsed Laser Deposition Conditions on the Microstructure of Ca3Co4O9 Thin Films. Journal of Electronic Materials, 2010, 39, 1611-1615.	2.2	16
383	Polyphenylene Dendrimerâ€Templated In Situ Construction of Inorganic–Organic Hybrid Riceâ€ S haped Architectures. Advanced Functional Materials, 2010, 20, 43-49.	14.9	32
384	Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Applied Catalysis A: General, 2010, 380, 55-65.	4.3	166
385	The roles of B-site ions in lead strontium zirconate titanate thin films for electrically tunable device applications. Thin Solid Films, 2010, 518, 3929-3932.	1.8	1
386	Sb ₂ Te ₃ Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity. Chemistry of Materials, 2010, 22, 3086-3092.	6.7	83
387	Generation of Dual Patterns of Metal Oxide Nanomaterials Based on Seed-Mediated Selective Growth. Langmuir, 2010, 26, 4616-4619.	3.5	12
388	Reducing the Symmetry of Bimetallic Au@Ag Nanoparticles by Exploiting Eccentric Polymer Shells. Journal of the American Chemical Society, 2010, 132, 9537-9539.	13.7	121
389	Tuning the shape and thermoelectric property of PbTe nanocrystals by bismuth doping. Nanoscale, 2010, 2, 1256.	5.6	45
390	Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb ₃ Nanoparticle Chains for Li-lon Battery Electrodes. Chemistry of Materials, 2010, 22, 5333-5339.	6.7	69
391	PHASE EVOLUTION AND MAGNETIC PROPERTIES OF FEPT-PTTE2 NANORODS. International Journal of Modern Physics B, 2009, 23, 3573-3578.	2.0	0
392	Binaryâ€Phased Nanoparticles for Enhanced Thermoelectric Properties. Advanced Materials, 2009, 21, 3196-3200.	21.0	66
393	In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. Journal of Physical Chemistry C, 2009, 113, 10842-10846.	3.1	702
394	Fabrication of Coreâ^'Shell Structure of M@C (M=Se, Au, Ag ₂ Se) and Transformation to Yolkâ^'Shell Structure by Electron Beam Irradiation or Vacuum Annealing. Chemistry of Materials, 2009, 21, 3848-3852.	6.7	55
395	Surfactantâ€Ðirected Synthesis of Branched Bismuth Telluride/Sulfide Core/Shell Nanorods. Advanced Materials, 2008, 20, 2679-2683.	21.0	69
396	A Simple Chemical Approach for PbTe Nanowires with Enhanced Thermoelectric Properties. Chemistry of Materials, 2008, 20, 6298-6300.	6.7	97

#	Article	IF	CITATIONS
397	Sequential Organicâ ``Inorganic Templating and Thermoelectric Properties of High-Aspect-Ratio Single-Crystal Lead Telluride Nanorods. Chemistry of Materials, 2008, 20, 4791-4793.	6.7	30