Jorge A M Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332127/publications.pdf

Version: 2024-02-01

48 papers

1,884 citations

279798 23 h-index 265206 42 g-index

48 all docs

48 docs citations

48 times ranked

2385 citing authors

#	Article	IF	CITATIONS
1	QuEChERS - Fundamentals, relevant improvements, applications and future trends. Analytica Chimica Acta, 2019, 1070, 1-28.	5.4	299
2	Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview. Metabolites, 2015, 5, 3-55.	2.9	223
3	Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends in Food Science and Technology, 2019, 85, 163-176.	15.1	145
4	Food fingerprints – A valuable tool to monitor food authenticity and safety. Food Chemistry, 2019, 278, 144-162.	8.2	125
5	Yeast activator proteins and stress response: an overview. FEBS Letters, 2004, 567, 80-85.	2.8	98
6	Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods, 2021, 10, 37.	4.3	94
7	Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites, 2014, 4, 71-97.	2.9	70
8	Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules, 2022, 27, 2953.	3.8	55
9	A fast method using a new hydrophilic–lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines. Talanta, 2011, 86, 82-90.	5 . 5	52
10	Screening of salivary volatiles for putative breast cancer discrimination: an exploratory study involving geographically distant populations. Analytical and Bioanalytical Chemistry, 2018, 410, 4459-4468.	3.7	46
11	Beer volatile fingerprinting at different brewing steps. Food Chemistry, 2020, 326, 126856.	8.2	43
12	Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature. Analytica Chimica Acta, 2018, 1023, 53-63.	5.4	42
13	Current trends on microextraction by packed sorbent $\hat{a} \in \text{``fundamentals, application fields, innovative improvements and future applications. Analyst, The, 2019, 144, 5048-5074.}$	3.5	39
14	Microextraction by packed sorbent: an emerging, selective and highâ€throughput extraction technique in bioanalysis. Biomedical Chromatography, 2014, 28, 839-847.	1.7	38
15	Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Analytical and Bioanalytical Chemistry, 2014, 406, 2101-2122.	3.7	38
16	Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profileâ€"Identification of novel compounds. Talanta, 2011, 83, 899-906.	5 . 5	37
17	Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography–mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile. Food Chemistry, 2012, 134, 2509-2520.	8.2	35
18	Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress. Biochemical Journal, 2004, 379, 367-374.	3.7	31

#	Article	IF	CITATIONS
19	YAP4 gene expression is induced in response to several forms of stress inSaccharomyces cerevisiae. Yeast, 2004, 21, 1365-1374.	1.7	28
20	Exploring the potential of NTME/GC-MS, in the establishment of urinary volatomic profiles. Lung cancer patients as case study. Scientific Reports, 2018, 8, 13113.	3.3	27
21	A fast and innovative microextraction technique, $\hat{1}$ /4SPEed, followed by ultrahigh performance liquid chromatography for the analysis of phenolic compounds in teas. Journal of Chromatography A, 2015, 1424, 1-9.	3.7	26
22	Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data. Food Chemistry, 2014, 145, 653-663.	8.2	24
23	Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis. Metabolomics, 2017, 13, 1.	3.0	24
24	A non-invasive approach to explore the discriminatory potential of the urinary volatilome of invasive ductal carcinoma of the breast. RSC Advances, 2018, 8, 25040-25050.	3.6	24
25	Volatilomic insight of head and neck cancer via the effects observed on saliva metabolites. Scientific Reports, 2018, 8, 17725.	3.3	22
26	A new and fast methodology to assess oxidative damage in cardiovascular diseases risk development through eVol-MEPS–UHPLC analysis of four urinary biomarkers. Talanta, 2013, 116, 164-172.	5.5	18
27	Unravelling the Potential of Salivary Volatile Metabolites in Oral Diseases. A Review. Molecules, 2020, 25, 3098.	3.8	17
28	Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. Applied Sciences (Switzerland), 2022, 12, 2747.	2.5	17
29	A Micro-Extraction Technique Using a New Digitally Controlled Syringe Combined with UHPLC for Assessment of Urinary Biomarkers of Oxidatively Damaged DNA. PLoS ONE, 2013, 8, e58366.	2.5	15
30	The Potential of Microextraction Techniques for the Analysis of Bioactive Compounds in Food. Frontiers in Nutrition, 2022, 9, 825519.	3.7	12
31	Green extraction approach based on $\hat{l}^{1}/\!\!\!/$ SPEed® followed by HPLC-MS/MS for the determination of atropine and scopolamine in tea and herbal tea infusions. Food Chemistry, 2022, 394, 133512.	8.2	12
32	Ultrasound-assisted liquid-liquid extraction followed by ultrahigh pressure liquid chromatography for the quantification of major carotenoids in tomato. Journal of Food Composition and Analysis, 2017, 57, 87-93.	3.9	11
33	Yap4 PKA―and GSK3â€dependent phosphorylation affects its stability but not its nuclear localization. Yeast, 2009, 26, 641-653.	1.7	10
34	Microextraction using packed sorbent as an effective and high-throughput sample extraction technique: Recent applications and future trends Sample Preparation, 2013, 1, .	0.4	10
35	A fast and environment-friendly MEPS PEP /UHPLC-PDA methodology to assess 3-hydroxy-4,5-dimethyl-2(5H)-furanone in fortified wines. Food Chemistry, 2017, 214, 686-693.	8.2	10
36	Quantification of \hat{l}' -, \hat{l}^3 - and \hat{l} ±-Tocopherol in Tomatoes Using an Improved Liquid-Dispersive Solid-Phase Extraction Combined with Ultrahigh Pressure Liquid Chromatography. Food Analytical Methods, 2017, 10, 2507-2517.	2.6	8

#	Article	IF	CITATIONS
37	Tangerines Cultivated on Madeira Island—A High Throughput Natural Source of Bioactive Compounds. Foods, 2020, 9, 1470.	4.3	8
38	A comprehensive methodology based on NTME/GC-MS data and chemometric tools for lemons discrimination according to geographical origin. Microchemical Journal, 2020, 157, 104933.	4.5	8
39	Fingerprinting the volatile profile of traditional tobacco and e-cigarettes: A comparative study. Microchemical Journal, 2021, 166, 106196.	4.5	7
40	Overview of Different Modes and Applications of Liquid Phase-Based Microextraction Techniques. Processes, 2022, 10, 1347.	2.8	7
41	Profiling the occurrence of biogenic amines in different types of tuna samples using an improved analytical approach. LWT - Food Science and Technology, 2021, 139, 110804.	5.2	6
42	Free low-molecular weight phenolics composition and bioactivity of Vaccinium padifolium Sm fruits. Food Research International, 2021, 148, 110580.	6.2	5
43	Wines: Madeira, Port and Sherry Fortified Wines – The Sui Generis and Notable Peculiarities. Major Differences and Chemical Patterns. , 2016, , 534-555.		4
44	The salivary volatome in breast cancer. , 2020, , 301-307.		4
45	Extracellular volatilomic alterations induced by hypoxia in breast cancer cells. Metabolomics, 2020, 16, 21.	3.0	4
46	Evaluation of the Health-Promoting Properties of Selected Fruits. Molecules, 2021, 26, 4202.	3.8	3
47	Urinary Volatomic Expression Pattern: Paving the Way for Identification of Potential Candidate Biosignatures for Lung Cancer. Metabolites, 2022, 12, 36.	2.9	3
48	Urinary volatomic profile of traditional tobacco smokers and electronic cigarettes users as a strategy to unveil potential healthy issues. Journal of Separation Science, 2021, , .	2.5	0