Ulf Andersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7332061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood, 2022, 139, 3181-3193.	1.4	23
2	HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. Journal of Intensive Medicine, 2022, 2, 156-166.	2.1	6
3	Famotidine exerts antiâ€inflammatory effects via a vagus nerveâ€dependent mechanism. FASEB Journal, 2022, 36, .	0.5	1
4	Famotidine activates the vagus nerve inflammatory reflex to attenuate cytokine storm. Molecular Medicine, 2022, 28, 57.	4.4	13
5	Efficacy of Moderately Dosed Etoposide in Macrophage Activation Syndrome–Hemophagocytic Lymphohistiocytosis. Journal of Rheumatology, 2021, 48, 1596-1602.	2.0	26
6	Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity, 2021, 54, 454-467.e6.	14.3	74
7	Therapeutic administration of etoposide coincides with reduced systemic HMGB1 levels in macrophage activation syndrome. Molecular Medicine, 2021, 27, 48.	4.4	7
8	Hyperinflammation: On the pathogenesis and treatment of macrophage activation syndrome. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 2717-2722.	1.5	17
9	Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Molecular Medicine, 2021, 27, 58.	4.4	25
10	HMGB1 released from nociceptors mediates inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
11	Neurons Are a Primary Driver of Inflammation via Release of HMGB1. Cells, 2021, 10, 2791.	4.1	13
12	Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells, 2021, 10, 3323.	4.1	32
13	Identification of a brainstem locus that inhibits tumor necrosis factor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29803-29810.	7.1	76
14	Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?. Molecular Medicine, 2020, 26, 42.	4.4	176
15	The cholinergic anti-inflammatory pathway alleviates acute lung injury. Molecular Medicine, 2020, 26, 64.	4.4	43
16	Prolonged elevation of plasma HMGB1 is associated with cognitive impairment in intensive care unit survivors. Intensive Care Medicine, 2020, 46, 811-812.	8.2	11
17	Expression of Concern to: Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Molecular Medicine, 2020, 26, 18.	4.4	3
18	Targeting Inflammation Driven by HMGB1. Frontiers in Immunology, 2020, 11, 484.	4.8	320

#	Article	IF	CITATIONS
19	Expression of concern to: High systematic levels of the cytokine-inducing HMGB1 isoform secreted in severe macrophage activation syndrome. Molecular Medicine, 2020, 26, 17.	4.4	0
20	Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Molecular Medicine, 2019, 25, 13.	4.4	75
21	Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2019, 16, 45.	7.2	21
22	Biphasic Release of the Alarmin High Mobility Group Box 1 Protein Early After Trauma Predicts Poor Clinical Outcome. Critical Care Medicine, 2019, 47, e614-e622.	0.9	11
23	Neuroinflammation in Response to Intracerebral Injections of Different HMGB1 Redox Isoforms. Journal of Innate Immunity, 2018, 10, 215-227.	3.8	41
24	Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opinion on Therapeutic Targets, 2018, 22, 263-277.	3.4	225
25	Identification of ethyl pyruvate as a NLRP3 inflammasome inhibitor that preserves mitochondrial integrity. Molecular Medicine, 2018, 24, 8.	4.4	29
26	High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Seminars in Immunology, 2018, 38, 40-48.	5.6	221
27	Adenylyl Cyclase 6 Mediates Inhibition of TNF in the Inflammatory Reflex. Frontiers in Immunology, 2018, 9, 2648.	4.8	49
28	Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Frontiers in Immunology, 2018, 9, 638.	4.8	15
29	Expression of Concern: The haptoglobin beta subunit sequesters <scp>HMGB</scp> 1 toxicity in sterile and infectious inflammation. Journal of Internal Medicine, 2017, 282, 76-93.	6.0	33
30	Emetine Di-HCl Attenuates Type 1 Diabetes Mellitus in Mice. Molecular Medicine, 2016, 22, 585-596.	4.4	5
31	Systemic HMGB1 Neutralization Prevents Postoperative Neurocognitive Dysfunction in Aged Rats. Frontiers in Immunology, 2016, 7, 441.	4.8	81
32	C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood, 2016, 128, 2218-2228.	1.4	130
33	A novel high mobility group box 1 neutralizing chimeric antibody attenuates drugâ€induced liver injury and postinjury inflammation in mice. Hepatology, 2016, 64, 1699-1710.	7.3	96
34	Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nature Biotechnology, 2016, 34, 1066-1071.	17.5	74
35	TLR4-dependant pro-inflammatory effects of HMCB1 on human adipocyte. Adipocyte, 2016, 5, 384-388.	2.8	21
36	Characterization of the Inflammatory Properties of Actively Released HMGB1 in Juvenile Idiopathic Arthritis. Antioxidants and Redox Signaling, 2016, 24, 605-619.	5.4	23

#	Article	IF	CITATIONS
37	Regulation of Posttranslational Modifications of HMGB1 During Immune Responses. Antioxidants and Redox Signaling, 2016, 24, 620-634.	5.4	98
38	Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight, 2016, 1, .	5.0	112
39	HMGB1 Mediates Anemia of Inflammation in Murine Sepsis Survivors. Molecular Medicine, 2015, 21, 951-958.	4.4	45
40	High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule. Molecular Medicine, 2015, 21, S6-S12.	4.4	275
41	MD-2 is required for disulfide HMGB1–dependent TLR4 signaling. Journal of Experimental Medicine, 2015, 212, 5-14.	8.5	295
42	High Systemic Levels of the Cytokine-Inducing HMGB1 Isoform Secreted in Severe Macrophage Activation Syndrome. Molecular Medicine, 2014, 20, 538-547.	4.4	45
43	α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release. Molecular Medicine, 2014, 20, 350-358.	4.4	169
44	Expression of Concern: The functions of <scp>HMGB</scp> 1 depend on molecular localization and postâ€ŧranslational modifications. Journal of Internal Medicine, 2014, 276, 420-424.	6.0	80
45	JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3068-3073.	7.1	300
46	Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain, 2014, 155, 1802-1813.	4.2	141
47	A Systematic Nomenclature for the Redox States of High Mobility Group Box (HMGB) Proteins. Molecular Medicine, 2014, 20, 135-137.	4.4	94
48	Expression of Concern: <scp>HMGB</scp> 1 mediates splenomegaly and expansion of splenic <scp>CD</scp> 11b+ <scp>L</scp> yâ€6 <scp>C</scp> ^{high} inflammatory monocytes in murine sepsis survivors. Journal of Internal Medicine, 2013, 274, 381-390.	6.0	74
49	TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis. Annals of the Rheumatic Diseases, 2013, 72, 1390-1399.	0.9	81
50	The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. Journal of Leukocyte Biology, 2013, 93, 865-873.	3.3	449
51	Regulation of HMGB1 release by inflammasomes. Protein and Cell, 2013, 4, 163-167.	11.0	144
52	TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO Journal, 2013, 32, 172-172.	7.8	2
53	High Mobility Group Box Protein 1 (HMGB1)-Partner Molecule Complexes Enhance Cytokine Production by Signaling Through the Partner Molecule Receptor. Molecular Medicine, 2012, 18, 224-230.	4.4	92
54	HMGB1-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Annals of the Rheumatic Diseases, 2012, 71, A80.1-A80.	0.9	0

#	Article	IF	CITATIONS
55	Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1 (HMGB1). Molecular Medicine, 2012, 18, 250-259.	4.4	378
56	HMGB1 mediates muscle fatigue via TLR4 - a possible mechanism for muscle fatigue in patients with inflammatory myopathies. Annals of the Rheumatic Diseases, 2012, 71, A42.2-A43.	0.9	0
57	Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 2012, 209, 1057-1068.	8.5	308
58	Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of Experimental Medicine, 2012, 209, 1519-1528.	8.5	590
59	HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease. Nature Reviews Rheumatology, 2012, 8, 195-202.	8.0	596
60	Pro-Inflammatory Cytokines Produced by Growth Plate Chondrocytes May Act Locally to Modulate Longitudinal Bone Growth. Hormone Research in Paediatrics, 2012, 77, 180-187.	1.8	18
61	TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO Journal, 2012, 32, 86-99.	7.8	117
62	Reflex Principles of Immunological Homeostasis. Annual Review of Immunology, 2012, 30, 313-335.	21.8	348
63	Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 2012, 488, 670-674.	27.8	672
64	Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of General Physiology, 2012, 140, i3-i3.	1.9	0
65	A new approach to rheumatoid arthritis: treating inflammation with computerized nerve stimulation. Cerebrum: the Dana Forum on Brain Science, 2012, 2012, 3.	0.1	8
66	HMGB1 Is a Therapeutic Target for Sterile Inflammation and Infection. Annual Review of Immunology, 2011, 29, 139-162.	21.8	1,230
67	Successful therapy with anti-HMGB1 monoclonal antibodies in two separate experimental arthritis models. Annals of the Rheumatic Diseases, 2011, 70, A77-A78.	0.9	0
68	Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science, 2011, 334, 98-101.	12.6	1,158
69	High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Research and Therapy, 2011, 13, R136.	3.5	117
70	Monoclonal Anti-HMGB1 (High Mobility Group Box Chromosomal Protein 1) Antibody Protection in Two Experimental Arthritis Models. Molecular Medicine, 2011, 17, 1039-1044.	4.4	101
71	Molecular basis of applied biological therapeutics. Journal of Internal Medicine, 2011, 269, 2-7.	6.0	4
72	Introduction: HMGB1 in inflammation and innate immunity. Journal of Internal Medicine, 2011, 270, 296-300.	6.0	44

#	Article	IF	CITATIONS
73	Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis and Rheumatism, 2010, 62, 2963-2972.	6.7	49
74	Immunomodulatory Drugs Regulate HMGB1 Release from Activated Human Monocytes. Molecular Medicine, 2010, 16, 343-351.	4.4	40
75	Immunomodulatory drugs can inhibit the extracellular release of HMGB1 from cultured human monocytes. Annals of the Rheumatic Diseases, 2010, 69, A36-A37.	0.9	Ο
76	Interleukin 1Â and TLR ligands give enhanced cytokine production by their interaction with HMGB1. Annals of the Rheumatic Diseases, 2010, 69, A38-A38.	0.9	0
77	Effects of HMGB1 on <i>in vitro</i> responses of isolated muscle fibers and functional aspects in skeletal muscles of idiopathic inflammatory myopathies. FASEB Journal, 2010, 24, 570-578.	0.5	74
78	A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11942-11947.	7.1	705
79	The role of HMCB1 in the pathogenesis of rheumatic disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 141-148.	1.9	104
80	Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1602-1607.	7.1	113
81	The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. Journal of Leukocyte Biology, 2009, 86, 655-662.	3.3	263
82	High mobility group box chromosomal protein 1 acts as a proliferation signal for activated T lymphocytes. Immunobiology, 2009, 214, 303-309.	1.9	57
83	A systems biology approach to understanding elevated serum alanine transaminase levels in a clinical trial with ximelagatran. Biomarkers, 2009, 14, 572-586.	1.9	51
84	High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Research and Therapy, 2008, 10, 209.	3.5	164
85	Systemic TNF blockade does not modulate synovial expression of the pro-inflammatory mediator HMGB1 in rheumatoid arthritis patients – a prospective clinical study. Arthritis Research and Therapy, 2008, 10, R33.	3.5	34
86	Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis. Arthritis Research and Therapy, 2008, 10, R1.	3.5	37
87	Pivotal Advance: Inhibition of HMGB1 nuclear translocation as a mechanism for the anti-rheumatic effects of gold sodium thiomalate. Journal of Leukocyte Biology, 2008, 83, 31-38.	3.3	45
88	HMGB1-secreting capacity of multiple cell lineages revealed by a novel HMGB1 ELISPOT assay. Journal of Leukocyte Biology, 2007, 81, 129-136.	3.3	39
89	Microscopic measurement of inflammation in synovial tissue: inter-observer agreement for manual quantitative, semiquantitative and computerised digital image analysis. Annals of the Rheumatic Diseases, 2007, 66, 1656-1660.	0.9	20
90	Morphological characterization of intra-articular HMGB1 expression during the course of collagen-induced arthritis. Arthritis Research and Therapy, 2007, 9, R35.	3.5	36

#	Article	IF	CITATIONS
91	Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. Arthritis and Rheumatism, 2007, 56, 674-687.	6.7	58
92	Intraarticular glucocorticoid treatment reduces inflammation in synovial cell infiltrations more efficiently than in synovial blood vessels. Arthritis and Rheumatism, 2005, 52, 3880-3889.	6.7	79
93	Title is missing!. Arthritis Research, 2005, 7, P85.	2.0	1
94	Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 296-301.	7.1	1,085
95	HMGB1, a pro-inflammatory cytokine of clinical interest: introduction. Journal of Internal Medicine, 2004, 255, 318-319.	6.0	31
96	Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis and Rheumatism, 2004, 50, 1586-1594.	6.7	102
97	Miniâ€review: The nuclear protein HMGB1 as a proinflammatory mediator. European Journal of Immunology, 2004, 34, 1503-1512.	2.9	379
98	HMGB1 as a mediator of necrosis-induced inflammation and a therapeutic target in arthritis. Rheumatic Disease Clinics of North America, 2004, 30, 627-637.	1.9	49
99	Tumor Necrosis Factor, Interleukin 11, and Leukemia Inhibitory Factor Produced by Langerhans Cells in Langerhans Cell Histiocytosis. Journal of Pediatric Hematology/Oncology, 2004, 26, 706-711.	0.6	29
100	High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis and Rheumatism, 2003, 48, 876-881.	6.7	82
101	High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis and Rheumatism, 2003, 48, 1693-1700.	6.7	161
102	HMGB1 in Sepsis. Scandinavian Journal of Infectious Diseases, 2003, 35, 577-584.	1.5	97
103	Structural Basis for the Proinflammatory Cytokine Activity of High Mobility Group Box 1. Molecular Medicine, 2003, 9, 37-45.	4.4	295
104	Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Molecular Medicine, 2003, 9, 37-45.	4.4	148
105	High Mobility Group Box Chromosomal Protein 1 (HMCB1) Is an Antibacterial Factor Produced by the Human Adenoid. Pediatric Research, 2002, 52, 148-154.	2.3	55
106	High mobility group box chromosomal protein 1: A novel proinflammatory mediator in synovitis. Arthritis and Rheumatism, 2002, 46, 2598-2603.	6.7	261
107	HMGB1 as a DNA-binding cytokine. Journal of Leukocyte Biology, 2002, 72, 1084-91.	3.3	215
108	Dynamics of Early Synovial Cytokine Expression in Rodent Collagen-Induced Arthritis. American Journal of Pathology, 2001, 158, 491-500.	3.8	39

#	Article	IF	CITATIONS
109	Systemic anti-tumor necrosis factor α therapy in rheumatoid arthritis down-regulates synovial tumor necrosis factor α synthesis. Arthritis and Rheumatism, 2000, 43, 2391-2396.	6.7	154
110	High Mobility Group 1 Protein (Hmg-1) Stimulates Proinflammatory Cytokine Synthesis in Human Monocytes. Journal of Experimental Medicine, 2000, 192, 565-570.	8.5	1,306
111	Identification of Rat IL-1β, IL-2, IFN-γ and TNF-α in Activated Splenocytes by Intracellular Immunostaining. Biotechnic and Histochemistry, 2000, 75, 101-109.	1.3	10
112	HMG-1 as a Late Mediator of Endotoxin Lethality in Mice. Science, 1999, 285, 248-251.	12.6	3,807
113	Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis and Rheumatism, 1997, 40, 865-874.	6.7	246
114	Localization of IL-1, IL-2, IL-4, IL-8 and TNF in Superficial Bladder Tumors Treated with Intravesical Bacillus Calmette-Guerin. Journal of Urology, 1996, 156, 536-541.	0.4	44
115	Computerized assessment of production of multiple human cytokines at the single-cell level using image analysis. Journal of Leukocyte Biology, 1996, 59, 287-295.	3.3	47
116	Antibody-targeted superantigen therapy induces tumor-infiltrating lymphocytes, excessive cytokine production, and apoptosis in human colon carcinoma. European Journal of Immunology, 1996, 26, 1-9.	2.9	68
117	Dissociation between cytokine mRNA expression and protein production in shigellosis. European Journal of Immunology, 1996, 26, 1130-1138.	2.9	35
118	The Production of Immunoregulatory Cytokines is Localized to the Extrafollicular Area of Human Tonsils. Acta Oto-Laryngologica, 1996, 116, 477-485.	0.9	32
119	Upregulated Local Cytokine Production in Recurrent Tonsillitis Compared with Tonsillar Hypertrophy. Acta Oto-Laryngologica, 1995, 115, 689-696.	0.9	34
120	Pooled Human IgG Modulates Cytokine Production in Lymphocytes and Monocytes. Immunological Reviews, 1994, 139, 21-42.	6.0	156
121	Serological Follow-up after Treatment of Borrelia Arthritis and Acrodermatitis Chronica Atrophicans. Scandinavian Journal of Infectious Diseases, 1994, 26, 339-347.	1.5	20
122	Strategies of Anti-Cytokine Monoclonal Antibody Development: Immunoassay of IL-10 and IL-5 in Clinical Samples. Immunological Reviews, 1992, 127, 5-24.	6.0	365
123	Bacterial Toxin-Induced Cytokine Production Studied at the Single-Cell Level. Immunological Reviews, 1992, 127, 69-96.	6.0	173
124	Lipopolysaccharide induces human interleukin-1 receptor antagonist and interleukin-1 production in the same cell. European Journal of Immunology, 1992, 22, 2617-2623.	2.9	112
125	Assessment of Cytokines by Immunofluorescence and the Paraformaldehyde-Saponin Procedure. Immunological Reviews, 1991, 119, 65-93.	6.0	462
126	Simultaneous production of interleukin 2, interleukin 4 and interferon-Î ³ by activated human blood lymphocytes. European Journal of Immunology, 1990, 20, 1591-1596.	2.9	167

#	Article	IF	CITATIONS
127	Identification of individual tumor necrosis factor/ cachectin-producing cells after lipopolysaccharide induction. European Journal of Immunology, 1988, 18, 983-988.	2.9	52
128	Gamma-Interferon is Produced by CD3+ and CD3- Lymphocytes. Immunological Reviews, 1987, 97, 51-65.	6.0	63
129	Phenotypic characterization of individual interferon-Î ³ -producing cells after OKT3 antibody activation. European Journal of Immunology, 1986, 16, 1457-1460.	2.9	16