
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7331134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Making Space in Geographical Analysis. Geographical Analysis, 2023, 55, 325-341.	3.5	2
2	<scp>flexsdm</scp> : An <scp>r</scp> package for supporting a comprehensive and flexible species distribution modelling workflow. Methods in Ecology and Evolution, 2022, 13, 1661-1669.	5.2	17
3	Species traits explain public perceptions of human–bird interactions. Ecological Applications, 2022, 32, e2676.	3.8	11
4	An expanded framework for wildland–urban interfaces and their management. Frontiers in Ecology and the Environment, 2022, 20, 516-523.	4.0	7
5	Predicting the assembly of novel communities in urban ecosystems. Landscape Ecology, 2021, 36, 1-15.	4.2	25
6	Microplastic pollution on island beaches, Oahu, Hawai`i. PLoS ONE, 2021, 16, e0247224.	2.5	23
7	History as grounds for interdisciplinarity: promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth, 2021, 4, 226-237.	6.8	12
8	Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 2021, 12, e03422.	2.2	42
9	Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
10	Global tropical dry forest extent and cover: A comparative study of bioclimatic definitions using two climatic data sets. PLoS ONE, 2021, 16, e0252063.	2.5	16
11	The foraging potential of the Holocene Cape south coast of South Africa without the Palaeo-Agulhas Plain. Quaternary Science Reviews, 2020, 235, 105789.	3.0	16
12	Describing a drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the Palaeo-Agulhas Plain. Quaternary Science Reviews, 2020, 235, 105866.	3.0	39
13	Geographically divergent evolutionary and ecological legacies shape mammal biodiversity in the global tropics and subtropics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1559-1565.	7.1	30
14	A fiery past: A comparison of glacial and contemporary fire regimes on the Palaeo-Agulhas Plain, Cape Floristic Region. Quaternary Science Reviews, 2020, 235, 106059.	3.0	14
15	Bird populations and species lost to Late Quaternary environmental change and human impact in the Bahamas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26833-26841.	7.1	8
16	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	4.5	397
17	The Palaeo-Agulhas Plain: Temporal and spatial variation in an extraordinary extinct ecosystem of the Pleistocene of the Cape Floristic Region. Quaternary Science Reviews, 2020, 235, 106161.	3.0	59
18	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62

#	Article	IF	CITATIONS
19	Modeling movement, distributions, diversity, and disturbance: introduction to the fifth special issue on spatial ecology. International Journal of Geographical Information Science, 2020, 34, 1503-1507.	4.8	2
20	Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190104.	4.0	333
21	Downscaling Last Glacial Maximum climate over southern Africa. Quaternary Science Reviews, 2019, 226, 105879.	3.0	54
22	A Convolutional Neural Network Classifier Identifies Tree Species in Mixed-Conifer Forest from Hyperspectral Imagery. Remote Sensing, 2019, 11, 2326.	4.0	126
23	Changing ecological communities along an elevation gradient in seasonally dry tropical forest on Hispaniola (Sierra MartÃn GarcÃa, Dominican Republic). Biotropica, 2019, 51, 802-816.	1.6	8
24	Local niche differences predict genotype associations in sister taxa of desert tortoise. Diversity and Distributions, 2019, 25, 1194-1209.	4.1	5
25	Social–Spatial Analyses of Attitudes toward the Desert in a Southwestern U.S. City. Annals of the American Association of Geographers, 2019, 109, 1845-1864.	2.2	15
26	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
27	What's hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distributions, 2019, 25, 492-498.	4.1	16
28	More than climate? Predictors of tree canopy height vary with scale in complex terrain, Sierra Nevada, CA (USA). Forest Ecology and Management, 2019, 434, 142-153.	3.2	32
29	Coupled land use and ecological models reveal emergence and feedbacks in socioâ€ecological systems. Ecography, 2019, 42, 814-825.	4.5	21
30	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
31	Regional forcing explains local species diversity and turnover on tropical islands. Global Ecology and Biogeography, 2018, 27, 474-486.	5.8	38
32	Geographical ecology of dry forest tree communities in the West Indies. Journal of Biogeography, 2018, 45, 1168-1181.	3.0	22
33	Holocene vertebrates from a dry cave on Eleuthera Island, Commonwealth of The Bahamas. Holocene, 2018, 28, 806-813.	1.7	6
34	Waterbird community composition, abundance, and diversity along an urban gradient. Landscape and Urban Planning, 2018, 170, 103-111.	7.5	42
35	Global Change and the Vulnerability of Chaparral Ecosystems. Bulletin of the Ecological Society of America, 2018, 99, e01460.	0.2	6
36	Writing the future of biogeography. Frontiers of Biogeography, 2018, 10, .	1.8	5

#	Article	IF	CITATIONS
37	Prioritizing conserved areas threatened by wildfire and fragmentation for monitoring and management. PLoS ONE, 2018, 13, e0200203.	2.5	10
38	Spatial sampling bias in the Neotoma paleoecological archives affects species paleo-distribution models. Quaternary Science Reviews, 2018, 198, 115-125.	3.0	8
39	Late Holocene Historical Ecology: The Timing of Vertebrate Extirpation on Crooked Island, Commonwealth of The Bahamas. Journal of Island and Coastal Archaeology, 2017, 12, 572-584.	1.4	11
40	Remote Sensing for Biodiversity. , 2017, , 187-210.		23
41	Effects of biotic interactions on modeled species' distribution can be masked by environmental gradients. Ecology and Evolution, 2017, 7, 654-664.	1.9	53
42	Origin, paleoecology, and extirpation of bluebirds and crossbills in the Bahamas across the last glacial–interglacial transition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9924-9929.	7.1	17
43	Boom–bust economics and vegetation dynamics in a desert city: How strong is the link?. Ecosphere, 2017, 8, e01826.	2.2	9
44	Reply to Benkman: Hispaniolan crossbills formerly resided in the Bahamas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10033-E10033.	7.1	0
45	Big data for forecasting the impacts of global change on plant communities. Global Ecology and Biogeography, 2017, 26, 6-17.	5.8	83
46	California forests show early indications of both range shifts and local persistence under climate change. Global Ecology and Biogeography, 2016, 25, 164-175.	5.8	21
47	Averaged 30 year climate change projections mask opportunities for species establishment. Ecography, 2016, 39, 844-845.	4.5	22
48	Shrinking windows of opportunity for oak seedling establishment in southern California mountains. Ecosphere, 2016, 7, e01573.	2.2	26
49	Heterogeneous tree recruitment following disturbance in insular tropical forest, Kingdom of Tonga. Journal of Tropical Ecology, 2016, 32, 536-542.	1.1	1
50	<i>Diversity and Distributions</i> is (still) a journal of conservation biogeography. Diversity and Distributions, 2016, 22, 1-2.	4.1	11
51	How Landscape Ecology Informs Global Land-Change Science and Policy. BioScience, 2016, 66, 458-469.	4.9	41
52	When the economic engine stalls â^' A multi-scale comparison of vegetation dynamics in pre- and post-recession Phoenix, Arizona, USA. Landscape and Urban Planning, 2016, 153, 140-148.	7.5	11
53	Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 2016, 353, 1383-1387.	12.6	490
54	State-of-the-art practices in farmland biodiversity monitoring for North America and Europe. Ambio, 2016. 45. 857-871.	5.5	16

#	Article	IF	CITATIONS
55	High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 2016, 31, 1063-1075.	4.2	43
56	Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3725-3734.	7.1	276
57	Space, time, connectivity and conflict in biological landscapes: the fourth special issue on spatial ecology. International Journal of Geographical Information Science, 2016, 30, 1-4.	4.8	56
58	The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters, 2015, 8, 214-226.	5.7	141
59	Paleoscape model of coastal South Africa during modern human origins. , 2015, , .		3
60	Legacy effects of noâ€analogue disturbances alter plant community diversity and composition in semiâ€arid sagebrush steppe. Journal of Vegetation Science, 2015, 26, 923-933.	2.2	8
61	Regional variation in Caribbean dry forest tree species composition. Plant Ecology, 2015, 216, 873-886.	1.6	18
62	Paleodistribution modeling in archaeology and paleoanthropology. Quaternary Science Reviews, 2015, 110, 1-14.	3.0	52
63	Disturbance and climate microrefugia mediate tree range shifts during climate change. Landscape Ecology, 2015, 30, 1039-1053.	4.2	52
64	A new research strategy for integrating studies of paleoclimate, paleoenvironment, and paleoanthropology. Evolutionary Anthropology, 2015, 24, 62-72.	3.4	50
65	Vertebrate community on an ice-age Caribbean island. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5963-71.	7.1	53
66	Changes in a West Indian bird community since the late Pleistocene. Journal of Biogeography, 2015, 42, 426-438.	3.0	32
67	Late-Holocene faunal and landscape change in the Bahamas. Holocene, 2014, 24, 220-230.	1.7	29
68	Linking spatially explicit species distribution and population models to plan for the persistence of plant species under global change. Environmental Conservation, 2014, 41, 97-109.	1.3	35
69	Bioclimatic velocity: the pace of species exposure to climate change. Diversity and Distributions, 2014, 20, 169-180.	4.1	60
70	Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem. International Journal of Geographical Information Science, 2014, 28, 1561-1589.	4.8	22
71	Fire Management, Managed Relocation, and Land Conservation Options for Longâ€Lived Obligate Seeding Plants under Global Changes in Climate, Urbanization, and Fire Regime. Conservation Biology, 2014, 28, 1057-1067.	4.7	27
72	Species distribution and diversity, habitat selection and connectivity: introduction to the Third Special Issue on Spatial Ecology. International Journal of Geographical Information Science, 2014, 28, 1527-1530.	4.8	5

#	Article	IF	CITATIONS
73	Species Distribution Modeling. , 2013, , 692-705.		73
74	Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions, 2013, 19, 1217-1223.	4.1	257
75	Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecological Processes, 2013, 2, .	3.9	23
76	Does functional type vulnerability to multiple threats depend on spatial context in <scp>M</scp> editerraneanâ€climate regions?. Diversity and Distributions, 2013, 19, 1263-1274.	4.1	20
77	Modeling plant species distributions under future climates: how fine scale do climate projections need to be?. Global Change Biology, 2013, 19, 473-483.	9.5	289
78	The Last Glacial Maximum distribution of South African subtropical thicket inferred from community distribution modelling. Journal of Biogeography, 2013, 40, 310-322.	3.0	40
79	Dispersal limitation, speciation, environmental filtering and niche differentiation influence forest tree communities in West Polynesia. Journal of Biogeography, 2013, 40, 988-999.	3.0	24
80	Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Global Change Biology, 2013, 19, 858-869.	9.5	53
81	Geospatial analysis of species, biodiversity and landscapes: introduction to the second special issue on spatial ecology. International Journal of Geographical Information Science, 2012, 26, 2003-2007.	4.8	9
82	Cumulative effects of land use, altered fire regime and climate change on persistence of <i>Ceanothus verrucosus</i> , a rare, fireâ€dependent plant species. Global Change Biology, 2012, 18, 2980-2980.	9.5	4
83	Evaluation of assisted colonization strategies under global change for a rare, fireâ€dependent plant. Global Change Biology, 2012, 18, 936-947.	9.5	36
84	The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus) Tj ETQq0 0 C) rgBT_/Ov	erlock 10 Tf 50
85	Patterns of pine regeneration following a large, severe wildfire in the mountains of southern California. Canadian Journal of Forest Research, 2011, 41, 810-821.	1.7	9
86	Geospatial tools address emerging issues in spatial ecology: a review and commentary on the Special Issue. International Journal of Geographical Information Science, 2011, 25, 337-365.	4.8	59
87	Planning, implementing, and monitoring multipleâ€species habitat conservation plans. American Journal of Botany, 2011, 98, 559-571.	1.7	21
88	A spatially explicit census reveals population structure and recruitment patterns for a narrowly endemic pine, Pinus torreyana. Plant Ecology, 2011, 212, 293-306.	1.6	8
89	Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data. Journal of Environmental Management, 2011, 92, 1882-1893.	7.8	60
90	Fire and Invasive Plants on California Landscapes. Ecological Studies, 2011, , 193-221.	1.2	20

#	Article	IF	CITATIONS
91	Vegetation dynamics and exotic plant invasion following high severity crown fire in a southern California conifer forest. Plant Ecology, 2010, 207, 281-295.	1.6	14
92	Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 2010, 16, 321-330.	4.1	366
93	Cumulative effects of land use, altered fire regime and climate change on persistence of <i>Ceanothus verrucosus</i> , a rare, fireâ€dependent plant species. Global Change Biology, 2010, 16, 2518-2529.	9.5	51
94	History and ecological basis of species distribution modeling. , 2010, , 1-2.		4
95	Habitat fragmentation and altered fire regime create tradeâ€offs for an obligate seeding shrub. Ecology, 2010, 91, 1114-1123.	3.2	41
96	Spatial Point Pattern Analysis of Plants. Advances in Spatial Science, 2010, , 113-123.	0.6	20
97	Forest Plant and Bird Communities in the Lau Group, Fiji. PLoS ONE, 2010, 5, e15685.	2.5	13
98	Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions, 2009, 15, 167-177.	4.1	104
99	Species prioritization for monitoring and management in regional multiple species conservation plans. Diversity and Distributions, 2008, 14, 462-471.	4.1	65
100	Assessing and Prioritizing Ecological Communities for Monitoring in a Regional Habitat Conservation Plan. Environmental Management, 2008, 42, 165-179.	2.7	27
101	Prehistoric species richness of birds on oceanic islands. Oikos, 2008, 117, 1885-1891.	2.7	10
102	Spatial patterns of tropical forest trees in Western Polynesia suggest recruitment limitations during secondary succession. Journal of Tropical Ecology, 2007, 23, 1-12.	1.1	39
103	Recovery from clearing, cyclone and fire in rain forests of Tonga, South Pacific: Vegetation dynamics 1995–2005. Austral Ecology, 2007, 32, 789-797.	1.5	53
104	Dispersal ecology of the lowland rain forest in the Vava'u island group, Kingdom of Tonga. New Zealand Journal of Botany, 2007, 45, 393-417.	1.1	15
105	Incorporating spatial dependence in predictive vegetation models. Ecological Modelling, 2007, 202, 225-242.	2.5	212
106	Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecology, 2007, 22, 431-445.	4.2	89
107	Impact of a high-intensity fire on mixed evergreen and mixed conifer forests in the Peninsular Ranges of southern California, USA. Forest Ecology and Management, 2006, 235, 18-29.	3.2	36
108	Environment, disturbance history and rain forest composition across the islands of Tonga, Western Polynesia. Journal of Vegetation Science, 2006, 17, 233-244.	2.2	38

#	Article	IF	CITATIONS
109	Explicitly incorporating spatial dependence in predictive vegetation models in the form of explanatory variables: a Mojave Desert case study. Journal of Geographical Systems, 2006, 8, 411-435.	3.1	12
110	VIABILITY OF BELL'S SAGE SPARROW (AMPHISPIZA BELLI SSP. BELLI): ALTERED FIRE REGIMES. , 2005, 15, 521-53	31.	32
111	Altered Fire Regimes Affect Landscape Patterns of Plant Succession in the Foothills and Mountains of Southern California. Ecosystems, 2005, 8, 885-898.	3.4	48
112	Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecological Complexity, 2005, 2, 185-203.	2.9	108
113	Change over 70 years in a southern California chaparral community related to fire history. Journal of Vegetation Science, 2004, 15, 701-710.	2.2	60
114	Spatial aggregation effects on the simulation of landscape pattern and ecological processes in southern California plant communities. Ecological Modelling, 2004, 180, 21-40.	2.5	29
115	Variations in a regional fire regime related to vegetation type in San Diego County, California (USA). Landscape Ecology, 2004, 19, 139-152.	4.2	35
116	The effects of Cyclone Waka on the structure of lowland tropical rain forest in Vava'u, Tonga. Journal of Tropical Ecology, 2004, 20, 409-420.	1.1	56
117	Effects of Cyclone Waka on flying foxes (Pteropus tonganus) in the Vava'u Islands of Tonga. Journal of Tropical Ecology, 2004, 20, 555-561.	1.1	35
118	Change over 70 years in a southern California chaparral community related to fire history. Journal of Vegetation Science, 2004, 15, 701.	2.2	6
119	Remotely Sensed Data for Ecosystem Analyses: Combining Hierarchy Theory and Scene Models. Environmental Management, 2003, 31, 429-441.	2.7	32
120	Rationale and Conceptual Framework for Classification Approaches to Assess Forest Resources and Properties. , 2003, , 279-300.		12
121	Regeneration and growth of pioneer and shadeâ€ŧolerant rain forest trees in Tonga. New Zealand Journal of Botany, 2003, 41, 669-684.	1.1	24
122	Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data. Photogrammetric Engineering and Remote Sensing, 2003, 69, 793-804.	0.6	168
123	Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science, 2002, 5, 135-146.	1.9	64
124	Mapping Wildfire Burn Severity in Southern California Forests and Shrublands Using Enhanced Thematic Mapper Imagery. Geocarto International, 2001, 16, 91-106.	3.5	94
125	Title is missing!. Plant Ecology, 2001, 156, 19-41.	1.6	68
126	Stratified Sampling for Field Survey of Environmental Gradients in the Mojave Desert Ecoregion. , 2001, , 229-253.		14

#	Article	IF	CITATIONS
127	The effects of future urban development on habitat fragmentation in the Santa Monica Mountains. , 2000, 15, 713-730.		105
128	A Preliminary Survey of Landbirds on Lakeba, Lau Group, Fiji. Emu, 2000, 100, 227-235.	0.6	11
129	A Neural Network Method for Efficient Vegetation Mapping. Remote Sensing of Environment, 1999, 70, 326-338.	11.0	125
130	Rain forest composition and patterns of secondary succession in the Vava'u Island Group, Tonga. Journal of Vegetation Science, 1999, 10, 51-64.	2.2	42
131	Conservation status of forests and vertebrate communities in the Vava`u Island Group, Tonga. Pacific Conservation Biology, 1999, 5, 191.	1.0	24
132	Predicting the distribution of shrub species in southern California from climate and terrainâ€derived variables. Journal of Vegetation Science, 1998, 9, 733-748.	2.2	269
133	Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 1995, 19, 474-499.	3.2	727
134	Discrimination of tropical vegetation types using SPOT multispectral data. Geocarto International, 1993, 8, 57-63.	3.5	12
135	Species-environment patterns of forest vegetation on the uplifted reef limestone of Atiu, Mangaia, Ma'uke and Miti'aro, Cook Islands. Journal of Vegetation Science, 1992, 3, 3-14.	2.2	28
136	Coniferous Forest Classification and Inventory Using Landsat and Digital Terrain Data. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24, 139-149.	6.3	80
137	ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions. Biodiversity Informatics, 0, 17, .	3.0	5