Leonid Afremov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/733000/publications.pdf

Version: 2024-02-01

1937685 1720034 46 103 4 7 citations h-index g-index papers 46 46 46 24 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of Mechanical Stress on Magnetic States and Hysteresis Characteristics of a Two-Phase Nanoparticles System. Journal of Nanomaterials, 2013, 2013, 1-15.	2.7	14
2	Size effect on the hysteresis characteristics of a system of interacting core/shell nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 447, 88-95.	2.3	14
3	Magnetic Concentration Phase Transitions in Ultrathin Films. Advanced Materials Research, 0, 683, 69-72.	0.3	11
4	Effect of mechanical stresses on the saturation remanence of a system of nanoparticles. Physics of Metals and Metallography, 2008, 106, 238-246.	1.0	8
5	Magnetic Phase Transitions in Ultrathin Films of Different Crystal Structures. Advanced Materials Research, 2011, 378-379, 589-592.	0.3	7
6	Modeling the effect of temperature and size of core/shell nanoparticles on the exchange bias of a hysteresis loop. Journal of Magnetism and Magnetic Materials, 2020, 500, 166366.	2.3	7
7	Magnetic States of Heterophase Particle in the Field of Mechanical Stresses. Advanced Materials Research, 2012, 557-559, 735-738.	0.3	4
8	Modeling the implications of chemical transformations for the magnetic properties of a system of titanomagnetite nanoparticles. Izvestiya, Physics of the Solid Earth, 2015, 51, 613-621.	0.9	4
9	Phase Transitions in Systems with Finite Number of Atoms. Advanced Materials Research, 2012, 472-475, 1827-1830.	0.3	3
10	Modeling of the magnetic properties of nanomaterials with different crystalline structure. Journal of Physics: Conference Series, 2013, 410, 012017.	0.4	3
11	Magnetic Dual-Phase State of Superparamagnetic Particles in the Field of Mechanical Stresses. Advanced Materials Research, 0, 683, 377-380.	0.3	3
12	Dependence of Neel Temperature on Ultrathin Film Thickness. Advanced Materials Research, 0, 813, 319-322.	0.3	3
13	Influence of Crystal Structure on the Magnetic Percolation Threshold in Ultrathin Films. Applied Mechanics and Materials, 0, 328, 823-826.	0.2	3
14	Thermoremanent and chemical magnetization of exsolution products of nanosized titanomagnetites. Izvestiya, Physics of the Solid Earth, 2018, 54, 128-133.	0.9	3
15	Magnetic aftereffect in systems of single-domain interacting particles and magnetic viscosity of rocks. Izvestiya, Physics of the Solid Earth, 2009, 45, 57-62.	0.9	2
16	Effect of elastic and plastic deformations on the remanent magnetization of an ensemble of nanoparticles. Physics of Metals and Metallography, 2011, 112, 13-24.	1.0	2
17	Phase Transition in Ultrathin Films. Solid State Phenomena, 2014, 215, 227-232.	0.3	2
18	Dependence of the Curie temperature on the thickness of an ultrathin film. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 104-107.	0.6	2

#	Article	IF	CITATIONS
19	Piezoremanent magnetization of the ensemble of single-domain particles. Izvestiya, Physics of the Solid Earth, 2009, 45, 63-69.	0.9	1
20	Effect of Mechanical Stresses on the Coercive Force of the Heterophase Non-Interacting Nanoparticles. Advanced Materials Research, 2012, 472-475, 2199-2202.	0.3	1
21	The Scientific Picture of the World as a Basis of Nanoelectronic Engineer's Professional Competence. Advanced Materials Research, 0, 655-657, 2165-2169.	0.3	1
22	Simulation of the Motion of Magnetic Nanoparticles in Human Tissues. Solid State Phenomena, 0, 215, 284-287.	0.3	1
23	Bethe Approximation in the Theory of "Average Spin". Advanced Materials Research, 2014, 900, 260-263.	0.3	1
24	Magnetic Condition Flat Core/Shell Nanoparticles. Applied Mechanics and Materials, 0, 752-753, 238-242.	0.2	1
25	Blocking Temperature and Hysteresis Characteristics of Nanoparticles of Oxidated Magnetite. Springer Geophysics, 2019, , 195-203.	0.9	1
26	Modelling the influence of interphase and magnetostatic interaction on the magnetic characteristics of core/shell nanoparticles. Chinese Journal of Physics, 2022, 77, 452-464.	3.9	1
27	Practical importance of models in the problems of rock magnetism. Izvestiya, Physics of the Solid Earth, 2010, 46, 641-645.	0.9	0
28	Effect of mechanical stresses on the initial susceptibility and hysteresis characteristics of an ensemble of nanoparticles. Physics of Metals and Metallography, 2011, 112, 425-431.	1.0	0
29	Effect of Mechanical Stresses on Coercive Force and Saturation Remanence of Ensemble of Dual-Phase Interacting Nanoparticles. Advanced Materials Research, 2012, 557-559, 501-504.	0.3	0
30	Effect of Mechanical Stresses on Metastability of Heterophase Superparamagnetic Nanoparticles. Advanced Materials Research, 2012, 602-604, 201-204.	0.3	0
31	Effect of Magnetic and Geometric Properties on the Time of Magnetic Relaxation of Superparamagnetic Core-Shell Nanoparticles. Advanced Materials Research, 0, 821-822, 1336-1340.	0.3	0
32	On the Calculation of Effective Anisotropy Constant of Nanoparticle. Advanced Materials Research, 0, 734-737, 2310-2313.	0.3	0
33	Influence of Interfacial Exchange Interaction on the Two-Phase Relaxation Time of Superparamagnetic Nanoparticles. Advanced Materials Research, 2014, 893, 153-157.	0.3	0
34	Effective Anisotropy Constant of Bilayer Film. Advanced Materials Research, 0, 887-888, 779-782.	0.3	0
35	Dependence of the Magnetic State of a Multi-Axis Nanoparticles from the Induced Anisotropy. Advanced Materials Research, 2014, 893, 158-161.	0.3	0
36	Blocking Temperature of the System Core-Shell Nanoparticles. Advanced Materials Research, 2014, 887-888, 167-169.	0.3	0

#	Article	IF	CITATIONS
37	Dependence of the metastability of the magnetic states of two-phase nanoparticles on mechanical stress. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 119-122.	0.6	0
38	The Effect of Mechanical Stresses on the Coercive Force of the System of Two-Phase Interacting Nanoparticles. Solid State Phenomena, 0, 215, 89-94.	0.3	0
39	Dependence of the Hysteresis Characteristics of Co-Au Core-Shell Nanoparticles on the Size of the Particles. Solid State Phenomena, 0, 233-234, 554-557.	0.3	0
40	Dependence of Relaxation Time on the Core Size Two-Phase Nanoparticles Magnetite/Titanomagnetite. Applied Mechanics and Materials, 0, 752-753, 418-421.	0.2	0
41	"Average Spin―Approximation in the Heisenberg Model. Applied Mechanics and Materials, 0, 752-753, 243-246.	0.2	0
42	Simulation of deformations in magnetic media by the movable cellular automata method. Journal of Physics: Conference Series, 2015, 633, 012018.	0.4	0
43	Possibility to use of the Fe3O4/Ta2O5 core-shell nanoparticles in radiotherapy. EPJ Web of Conferences, 2018, 185, 10008.	0.3	O
44	Magnetic Radio Modifier Based on the Fe _{/Ta₂0₅ Nanoparticles. Defect and Diffusion Forum, 0, 386, 156-160.}	0.4	0
45	Hysteresis Characteristics of Interacting Fe/Fe3O4 Core/Shell Nanoparticles. , 0, , .		0
46	Blocking Temperature of a System of Core/Shell Nanoparticles. Solid State Phenomena, 0, 312, 270-274.	0.3	0