Naresh Devineni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7329836/publications.pdf

Version: 2024-02-01

279798 276875 59 1,842 23 41 citations h-index g-index papers 63 63 63 2312 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Understanding New York City street flooding through 311 complaints. Journal of Hydrology, 2022, 605, 127300.	5.4	6
2	An Improved Zhang's Dynamic Water Balance Model Using Budykoâ€Based Snow Representation for Better Streamflow Predictions. Water Resources Research, 2022, 58, .	4.2	3
3	Examining the changes in the spatial manifestation and the rate of arrival of large tornado outbreaks. Environmental Research Communications, 2022, 4, 021001.	2.3	O
4	The Role of Regional Connections in Planning for Future Power System Operations Under Climate Extremes. Earth's Future, 2022, 10 , .	6.3	5
5	Dynamic Flow Alteration Index for Complex River Networks With Cascading Reservoir Systems. Water Resources Research, 2022, 58, .	4.2	6
6	How Does Flow Alteration Propagate Across a Large, Highly Regulated Basin? Dam Attributes, Network Context, and Implications for Biodiversity. Earth's Future, 2022, 10, .	6.3	3
7	Solving groundwater depletion in India while achieving food security. Nature Communications, 2022, 13, .	12.8	23
8	A machine learning approach to evaluate the spatial variability of New York City's 311 street flooding complaints. Computers, Environment and Urban Systems, 2022, 97, 101854.	7.1	10
9	Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices. Scientific Reports, 2021, 11, 1741.	3.3	16
10	Quantifying vegetation response to environmental changes on the Galapagos Islands, Ecuador using the Normalized Difference Vegetation Index (NDVI). Environmental Research Communications, 2021, 3, 065003.	2.3	4
11	Quantifying Damâ€Induced Fluctuations in Streamflow Frequencies Across the Colorado River Basin. Water Resources Research, 2021, 57, e2021WR029753.	4.2	10
12	Quantifying streamflow regime behavior and its sensitivity to demand. Journal of Hydrology, 2020, 582, 124423.	5 . 4	1
13	Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nature Communications, 2020, 11, 4991.	12.8	59
14	Simulating precipitation in the Northeast United States using a <scp>climateâ€informed <i>K</i>â€nearest</scp> neighbour algorithm. Hydrological Processes, 2020, 34, 3966-3980.	2.6	1
15	The effects of preâ€season high flows, climate, and the Three Gorges Dam on low flow at the Three Gorges Region, China. Hydrological Processes, 2020, 34, 2088-2100.	2.6	4
16	Understanding the Spatial Organization of Simultaneous Heavy Precipitation Events Over the Conterminous United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033036.	3.3	3
17	Streamflow Reconstruction in the Upper Missouri River Basin Using a Novel Bayesian Network Model. Water Resources Research, 2019, 55, 7694-7716.	4.2	16
18	Coupled flow accumulation and atmospheric blocking govern flood duration. Npj Climate and Atmospheric Science, $2019, 2, .$	6.8	17

#	Article	IF	CITATIONS
19	Evaluating China's Water Security for Food Production: The Role of Rainfall and Irrigation. Geophysical Research Letters, 2019, 46, 11155-11166.	4.0	25
20	Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields. Environmental Research Letters, 2019, 14, 074021.	5.2	22
21	New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the New York Academy of Sciences, 2019, 1439, 30-70.	3.8	21
22	Does demand for subway ridership in Manhattan depend on the rainfall events?. Transport Policy, 2019, 74, 201-213.	6.6	8
23	Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology. Earth's Future, 2018, 6, 410-427.	6.3	71
24	Monthly hydroclimatology of the continental United States. Advances in Water Resources, 2018, 114, 180-195.	3.8	9
25	Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 2018, 627, 304-313.	8.0	96
26	Assessing the economic impact of a low-cost water-saving irrigation technology in Indian Punjab: the tensiometer. Water International, 2018, 43, 305-321.	1.0	24
27	Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes. Journal of Climate, 2018, 31, 369-385.	3.2	54
28	Sustainable Development of Water Resources: Spatio-Temporal Analysis of Water Stress in South Korea. Sustainability, 2018, 10, 3795.	3.2	7
29	Season-ahead forecasting of water storage and irrigation requirements – an application to the southwest monsoon in India. Hydrology and Earth System Sciences, 2018, 22, 5125-5141.	4.9	4
30	Recent trends in the frequency and duration of global floods. Earth System Dynamics, 2018, 9, 757-783.	7.1	112
31	Six Centuries of Upper Indus Basin Streamflow Variability and Its Climatic Drivers. Water Resources Research, 2018, 54, 5687-5701.	4.2	40
32	The future role of dams in the $\langle scp \rangle U \langle scp \rangle nited \langle scp \rangle S \langle scp \rangle tates of \langle scp \rangle A \langle scp \rangle merica. Water Resources Research, 2017, 53, 982-998.$	4.2	135
33	Statistical filtering of river survey and streamflow data for improving At-A-Station hydraulic geometry relations. Journal of Hydrology, 2017, 547, 443-454.	5. 4	4
34	Hydroclimate drivers and atmospheric teleconnections of long duration floods: An application to large reservoirs in the Missouri River Basin. Advances in Water Resources, 2017, 100, 153-167.	3.8	49
35	Classifying Urban Rainfall Extremes Using Weather Radar Data: An Application to the Greater New York Area. Journal of Hydrometeorology, 2017, 18, 611-623.	1.9	16
36	An environmental perspective on the water management policies of the Upper Delaware River Basin. Water Policy, 2016, 18, 1399-1419.	1.5	10

#	Article	IF	CITATIONS
37	A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates. Journal of Hydrology, 2016, 541, 816-823.	5.4	44
38	America's water: Agricultural water demands and the response of groundwater. Geophysical Research Letters, 2016, 43, 7546-7555.	4.0	20
39	Development of a Demand Sensitive Drought Index and its application for agriculture over the conterminous United States. Journal of Hydrology, 2016, 534, 219-229.	5 . 4	25
40	An Empirical, Nonparametric Simulator for Multivariate Random Variables with Differing Marginal Densities and Nonlinear Dependence with Hydroclimatic Applications. Risk Analysis, 2016, 36, 57-73.	2.7	21
41	America's water risk: Current demand and climate variability. Geophysical Research Letters, 2015, 42, 2285-2293.	4.0	49
42	Scaling of extreme rainfall areas at a planetary scale. Chaos, 2015, 25, 075407.	2.5	6
43	A climate informed model for nonstationary flood risk prediction: Application to Negro River at Manaus, Amazonia. Journal of Hydrology, 2015, 522, 594-602.	5.4	64
44	Up-to-date probabilistic temperature climatologies. Environmental Research Letters, 2015, 10, 024014.	5.2	7
45	Can improved agricultural water use efficiency save India's groundwater?. Environmental Research Letters, 2015, 10, 084022.	5.2	114
46	Assessment of Agricultural Water Management in Punjab, India, Using Bayesian Methods. , 2015, , 147-162.		9
47	Climate information based streamflow and rainfall forecasts for Huai River basin using hierarchical Bayesian modeling. Hydrology and Earth System Sciences, 2014, 18, 1539-1548.	4.9	33
48	China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands. Hydrology and Earth System Sciences, 2014, 18, 1653-1662.	4.9	15
49	Assessing chronic and climateâ€induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India. Water Resources Research, 2013, 49, 2135-2145.	4.2	37
50	The Role of Multimodel Climate Forecasts in Improving Water and Energy Management over the Tana River Basin, Kenya. Journal of Applied Meteorology and Climatology, 2013, 52, 2460-2475.	1.5	20
51	A Tree-Ring-Based Reconstruction of Delaware River Basin Streamflow Using Hierarchical Bayesian Regression. Journal of Climate, 2013, 26, 4357-4374.	3.2	71
52	Is an Epic Pluvial Masking the Water Insecurity of the Greater New York City Region?*,+. Journal of Climate, 2013, 26, 1339-1354.	3.2	126
53	Seasonality of monthly runoff over the continental United States: Causality and relations to mean annual and mean monthly distributions of moisture and energy. Journal of Hydrology, 2012, 468-469, 139-150.	5. 4	50
54	Improving the Prediction of Winter Precipitation and Temperature over the Continental United States: Role of the ENSO State in Developing Multimodel Combinations. Monthly Weather Review, 2010, 138, 2447-2468.	1,4	37

#	ARTICLE	IF	CITATION
55	Improved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs. Geophysical Research Letters, 2010, 37, .	4.0	38
56	Improving the Prediction of Winter Precipitation and Temperature over the Continental United States: Role of the ENSO State in Developing Multimodel Combinations. Monthly Weather Review, 2010, 138, 2447-2468.	1.4	1
57	Improved Drought Management of Falls Lake Reservoir: Role of Multimodel Streamflow Forecasts in Setting up Restrictions. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 188-197.	2.6	40
58	The Role of Monthly Updated Climate Forecasts in Improving Intraseasonal Water Allocation. Journal of Applied Meteorology and Climatology, 2009, 48, 1464-1482.	1.5	49
59	Multimodel ensembles of streamflow forecasts: Role of predictor state in developing optimal combinations. Water Resources Research, 2008, 44, W09404.	4.2	63