Naresh Devineni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7329836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The future role of dams in the <scp>U</scp> nited <scp>S</scp> tates of <scp>A</scp> merica. Water Resources Research, 2017, 53, 982-998.	4.2	135
2	Is an Epic Pluvial Masking the Water Insecurity of the Greater New York City Region?*,+. Journal of Climate, 2013, 26, 1339-1354.	3.2	126
3	Can improved agricultural water use efficiency save India's groundwater?. Environmental Research Letters, 2015, 10, 084022.	5.2	114
4	Recent trends in the frequency and duration of global floods. Earth System Dynamics, 2018, 9, 757-783.	7.1	112
5	Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 2018, 627, 304-313.	8.0	96
6	A Tree-Ring-Based Reconstruction of Delaware River Basin Streamflow Using Hierarchical Bayesian Regression. Journal of Climate, 2013, 26, 4357-4374.	3.2	71
7	Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology. Earth's Future, 2018, 6, 410-427.	6.3	71
8	A climate informed model for nonstationary flood risk prediction: Application to Negro River at Manaus, Amazonia. Journal of Hydrology, 2015, 522, 594-602.	5.4	64
9	Multimodel ensembles of streamflow forecasts: Role of predictor state in developing optimal combinations. Water Resources Research, 2008, 44, W09404.	4.2	63
10	Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nature Communications, 2020, 11, 4991.	12.8	59
11	Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes. Journal of Climate, 2018, 31, 369-385.	3.2	54
12	Seasonality of monthly runoff over the continental United States: Causality and relations to mean annual and mean monthly distributions of moisture and energy. Journal of Hydrology, 2012, 468-469, 139-150.	5.4	50
13	The Role of Monthly Updated Climate Forecasts in Improving Intraseasonal Water Allocation. Journal of Applied Meteorology and Climatology, 2009, 48, 1464-1482.	1.5	49
14	America's water risk: Current demand and climate variability. Geophysical Research Letters, 2015, 42, 2285-2293.	4.0	49
15	Hydroclimate drivers and atmospheric teleconnections of long duration floods: An application to large reservoirs in the Missouri River Basin. Advances in Water Resources, 2017, 100, 153-167.	3.8	49
16	A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates. Journal of Hydrology, 2016, 541, 816-823.	5.4	44
17	Improved Drought Management of Falls Lake Reservoir: Role of Multimodel Streamflow Forecasts in Setting up Restrictions. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 188-197.	2.6	40
18	Six Centuries of Upper Indus Basin Streamflow Variability and Its Climatic Drivers. Water Resources Research, 2018, 54, 5687-5701.	4.2	40

NARESH DEVINENI

#	Article	IF	CITATIONS
19	Improved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs. Geophysical Research Letters, 2010, 37, .	4.0	38
20	Improving the Prediction of Winter Precipitation and Temperature over the Continental United States: Role of the ENSO State in Developing Multimodel Combinations. Monthly Weather Review, 2010, 138, 2447-2468.	1.4	37
21	Assessing chronic and climateâ€induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India. Water Resources Research, 2013, 49, 2135-2145.	4.2	37
22	Climate information based streamflow and rainfall forecasts for Huai River basin using hierarchical Bayesian modeling. Hydrology and Earth System Sciences, 2014, 18, 1539-1548.	4.9	33
23	Development of a Demand Sensitive Drought Index and its application for agriculture over the conterminous United States. Journal of Hydrology, 2016, 534, 219-229.	5.4	25
24	Evaluating China's Water Security for Food Production: The Role of Rainfall and Irrigation. Geophysical Research Letters, 2019, 46, 11155-11166.	4.0	25
25	Assessing the economic impact of a low-cost water-saving irrigation technology in Indian Punjab: the tensiometer. Water International, 2018, 43, 305-321.	1.0	24
26	Solving groundwater depletion in India while achieving food security. Nature Communications, 2022, 13, .	12.8	23
27	Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields. Environmental Research Letters, 2019, 14, 074021.	5.2	22
28	An Empirical, Nonparametric Simulator for Multivariate Random Variables with Differing Marginal Densities and Nonlinear Dependence with Hydroclimatic Applications. Risk Analysis, 2016, 36, 57-73.	2.7	21
29	New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the New York Academy of Sciences, 2019, 1439, 30-70.	3.8	21
30	The Role of Multimodel Climate Forecasts in Improving Water and Energy Management over the Tana River Basin, Kenya. Journal of Applied Meteorology and Climatology, 2013, 52, 2460-2475.	1.5	20
31	America's water: Agricultural water demands and the response of groundwater. Geophysical Research Letters, 2016, 43, 7546-7555.	4.0	20
32	Coupled flow accumulation and atmospheric blocking govern flood duration. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	17
33	Classifying Urban Rainfall Extremes Using Weather Radar Data: An Application to the Greater New York Area. Journal of Hydrometeorology, 2017, 18, 611-623.	1.9	16
34	Streamflow Reconstruction in the Upper Missouri River Basin Using a Novel Bayesian Network Model. Water Resources Research, 2019, 55, 7694-7716.	4.2	16
35	Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices. Scientific Reports, 2021, 11, 1741.	3.3	16
36	China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands. Hydrology and Earth System Sciences, 2014, 18, 1653-1662.	4.9	15

NARESH DEVINENI

#	Article	IF	CITATIONS
37	An environmental perspective on the water management policies of the Upper Delaware River Basin. Water Policy, 2016, 18, 1399-1419.	1.5	10
38	Quantifying Damâ€Induced Fluctuations in Streamflow Frequencies Across the Colorado River Basin. Water Resources Research, 2021, 57, e2021WR029753.	4.2	10
39	A machine learning approach to evaluate the spatial variability of New York City's 311 street flooding complaints. Computers, Environment and Urban Systems, 2022, 97, 101854.	7.1	10
40	Monthly hydroclimatology of the continental United States. Advances in Water Resources, 2018, 114, 180-195.	3.8	9
41	Assessment of Agricultural Water Management in Punjab, India, Using Bayesian Methods. , 2015, , 147-162.		9
42	Does demand for subway ridership in Manhattan depend on the rainfall events?. Transport Policy, 2019, 74, 201-213.	6.6	8
43	Up-to-date probabilistic temperature climatologies. Environmental Research Letters, 2015, 10, 024014.	5.2	7
44	Sustainable Development of Water Resources: Spatio-Temporal Analysis of Water Stress in South Korea. Sustainability, 2018, 10, 3795.	3.2	7
45	Scaling of extreme rainfall areas at a planetary scale. Chaos, 2015, 25, 075407.	2.5	6
46	Understanding New York City street flooding through 311 complaints. Journal of Hydrology, 2022, 605, 127300.	5.4	6
47	Dynamic Flow Alteration Index for Complex River Networks With Cascading Reservoir Systems. Water Resources Research, 2022, 58, .	4.2	6
48	The Role of Regional Connections in Planning for Future Power System Operations Under Climate Extremes. Earth's Future, 2022, 10, .	6.3	5
49	Statistical filtering of river survey and streamflow data for improving At-A-Station hydraulic geometry relations. Journal of Hydrology, 2017, 547, 443-454.	5.4	4
50	Season-ahead forecasting of water storage and irrigation requirements – an application to the southwest monsoon in India. Hydrology and Earth System Sciences, 2018, 22, 5125-5141.	4.9	4
51	The effects of preâ€season high flows, climate, and the Three Gorges Dam on low flow at the Three Gorges Region, China. Hydrological Processes, 2020, 34, 2088-2100.	2.6	4
52	Quantifying vegetation response to environmental changes on the Galapagos Islands, Ecuador using the Normalized Difference Vegetation Index (NDVI). Environmental Research Communications, 2021, 3, 065003.	2.3	4
53	Understanding the Spatial Organization of Simultaneous Heavy Precipitation Events Over the Conterminous United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033036.	3.3	3
54	An Improved Zhang's Dynamic Water Balance Model Using Budykoâ€Based Snow Representation for Better Streamflow Predictions. Water Resources Research, 2022, 58, .	4.2	3

NARESH DEVINENI

#	Article	IF	CITATIONS
55	How Does Flow Alteration Propagate Across a Large, Highly Regulated Basin? Dam Attributes, Network Context, and Implications for Biodiversity. Earth's Future, 2022, 10, .	6.3	3
56	Quantifying streamflow regime behavior and its sensitivity to demand. Journal of Hydrology, 2020, 582, 124423.	5.4	1
57	Simulating precipitation in the Northeast United States using a <scp>climateâ€informed <i>K</i>â€nearest</scp> neighbour algorithm. Hydrological Processes, 2020, 34, 3966-3980.	2.6	1
58	Improving the Prediction of Winter Precipitation and Temperature over the Continental United States: Role of the ENSO State in Developing Multimodel Combinations. Monthly Weather Review, 2010, 138, 2447-2468.	1.4	1
59	Examining the changes in the spatial manifestation and the rate of arrival of large tornado outbreaks. Environmental Research Communications, 2022, 4, 021001.	2.3	0