
Joel L Sussman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7327216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>IceBear</i> : an intuitive and versatile web application for research-data tracking from crystallization experiment to PDB deposition. Acta Crystallographica Section D: Structural Biology, 2021, 77, 151-163.	1.1	13
2	<i>Torpedo californica</i> acetylcholinesterase is stabilized by binding of a divalent metal ion to a novel and versatile 4D motif. Protein Science, 2021, 30, 966-981.	3.1	8
3	A practical guide to teaching with Proteopedia. Biochemistry and Molecular Biology Education, 2021, 49, 707-719.	0.5	3
4	Enzyme Evolution: An Epistatic Ratchet versus a Smooth Reversible Transition. Molecular Biology and Evolution, 2020, 37, 1133-1147.	3.5	26
5	Computational studies on cholinesterases: Strengthening our understanding of the integration of structure, dynamics and function. Neuropharmacology, 2020, 179, 108265.	2.0	6
6	A Second Look at the Crystal Structures of Drosophila melanogaster Acetylcholinesterase in Complex with Tacrine Derivatives Provides Insights Concerning Catalytic Intermediates and the Design of Specific Insecticides. Molecules, 2020, 25, 1198.	1.7	11
7	Polyproline-rich peptides associated with Torpedo californica acetylcholinesterase tetramers. Chemico-Biological Interactions, 2020, 319, 109007.	1.7	2
8	A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo) Tj ETQq0 0 0 rgBT /C	verlock 10 0.8) Tf 50 462 T
9	The four-helix bundle in cholinesterase dimers: Structural and energetic determinants of stability. Chemico-Biological Interactions, 2019, 309, 108699.	1.7	4
10	Molecular dynamics simulations of the interaction of Mouse and Torpedo acetylcholinesterase with covalent inhibitors explain their differential reactivity: Implications for drug design. Chemico-Biological Interactions, 2019, 310, 108715.	1.7	11

11	Rivastigmine and metabolite analogues with putative Alzheimer's disease-modifying properties in a Caenorhabditis elegans model. Communications Chemistry, 2019, 2, .	2.0	25
12	Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. European Journal of Medicinal Chemistry, 2019, 168, 58-77.	2.6	51
13	Novel multitarget-directed ligands targeting acetylcholinesterase and Ïf1 receptors as lead compounds for treatment of Alzheimer's disease: Synthesis, evaluation, and structural characterization of their complexes with acetylcholinesterase. European Journal of Medicinal Chemistry, 2019, 162, 234-248.	2.6	35
14	An intrinsically disordered proteins community for ELIXIR. F1000Research, 2019, 8, 1753.	0.8	12
15	On the Importance of Computational Biology and Bioinformatics to the Origins and Rapid Progression of the Intrinsically Disordered Proteins Field. , 2019, , .		0
16	Potent 3â€Hydroxyâ€2â€Pyridine Aldoxime Reactivators of Organophosphateâ€Inhibited Cholinesterases with Predicted Blood–Brain Barrier Penetration. Chemistry - A European Journal, 2018, 24, 9675-9691.	1.7	50
17	Comparing NMR and X-ray protein structure: Lindemann-like parameters and NMR disorder. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2331-2341.	2.0	13
18	Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13270-13275.	3.3	24

#	Article	IF	CITATIONS
19	Structure-Based Optimization of Nonquaternary Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Journal of Medicinal Chemistry, 2018, 61, 7630-7639.	2.9	44
20	Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Engineering, Design and Selection, 2017, 30, 333-345.	1.0	57
21	Recent developments in structural studies on acetylcholinesterase. Journal of Neurochemistry, 2017, 142, 19-25.	2.1	22
22	Computational Studies on Acetylcholinesterases. Molecules, 2017, 22, 1324.	1.7	33
23	The impact of crystallization conditions on structureâ€based drug design: A case study on the methylene blue/acetylcholinesterase complex. Protein Science, 2016, 25, 1096-1114.	3.1	31
24	InÂvitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for inÂvivo protection against organophosphate intoxications. Chemico-Biological Interactions, 2016, 259, 252-256.	1.7	17
25	Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Molecular Cell, 2016, 63, 337-346.	4.5	363
26	Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection. Toxicology Letters, 2016, 258, 198-206.	0.4	24
27	Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Archives of Toxicology, 2016, 90, 2711-2724.	1.9	42
28	Catalytic Stimulation by Restrained Active-Site Floppiness—The Case of High Density Lipoprotein-Bound Serum Paraoxonase-1. Journal of Molecular Biology, 2015, 427, 1359-1374.	2.0	37
29	pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Research, 2014, 42, D326-D335.	6.5	195
30	Post-exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: A proof-of-concept study. Toxicology Letters, 2014, 231, 45-54.	0.4	40
31	Guest Editorial: Databases and Bioinformatics Tools. Israel Journal of Chemistry, 2013, 53, 143-143.	1.0	Ο
32	Catalytic Metal Ion Rearrangements Underline Promiscuity and Evolvability of a Metalloenzyme. Journal of Molecular Biology, 2013, 425, 1028-1038.	2.0	58
33	The specific interaction of the photosensitizer methylene blue with acetylcholinesterase provides a model system for studying the molecular consequences of photodynamic therapy. Chemico-Biological Interactions, 2013, 203, 63-66.	1.7	4
34	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
35	JSmol and the Nextâ€Generation Webâ€Based Representation of 3D Molecular Structure as Applied to <i>Proteopedia</i> . Israel Journal of Chemistry, 2013, 53, 207-216.	1.0	210
36	Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nature Chemical Biology, 2012, 8, 294-300.	3.9	205

#	Article	IF	CITATIONS
37	Catalytic Versatility and Backups in Enzyme Active Sites: The Case of Serum Paraoxonase 1. Journal of Molecular Biology, 2012, 418, 181-196.	2.0	148
38	Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 13-25.	2.5	91
39	Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with <i>Torpedo californica</i> acetylcholinesterase. Protein Science, 2012, 21, 1138-1152.	3.1	14
40	Acetylcholinesterase: Substrate traffic and inhibition. Biochemistry and Molecular Biology Education, 2012, 40, 144-144.	0.5	0
41	Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3. Biomolecular NMR Assignments, 2012, 6, 15-18.	0.4	7
42	Evolved Stereoselective Hydrolases for Broad-Spectrum G-Type Nerve Agent Detoxification. Chemistry and Biology, 2012, 19, 456-466.	6.2	81
43	Structure of recombinant human carboxylesterase 1 isolated from whole cabbage looper larvae. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 269-272.	0.7	6
44	Proteopedia: Exciting Advances in the 3D Encyclopedia of Biomolecular Structure. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 149-161.	0.5	0
45	Comparison of a molecular dynamics model with the X-ray structure of the N370S acid-Â-glucosidase mutant that causes Gaucher disease. Protein Engineering, Design and Selection, 2011, 24, 773-775.	1.0	13
46	Structure of Estradiol Metal Chelate and Estrogen Receptor Complex: The Basis for Designing a New Class of Selective Estrogen Receptor Modulators. Journal of Medicinal Chemistry, 2011, 54, 3575-3580.	2.9	28
47	Expression of protein complexes using multiple Escherichia coli protein co-expression systems: A benchmarking study. Journal of Structural Biology, 2011, 175, 159-170.	1.3	39
48	Proteopedia: A status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. Journal of Structural Biology, 2011, 175, 244-252.	1.3	49
49	From SPINE to SPINE-2 complexes and beyond. Journal of Structural Biology, 2011, 175, 105.	1.3	1
50	In vitro detoxification of cyclosarin in human blood pre-incubated ex vivo with recombinant serum paraoxonases. Toxicology Letters, 2011, 206, 24-28.	0.4	17
51	Cyclodextrin-mediated crystallization of acid β-glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Organic and Biomolecular Chemistry, 2011, 9, 4160.	1.5	31
52	Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nature Chemical Biology, 2011, 7, 120-125.	3.9	176
53	Contextâ€dependent resistance to proteolysis of intrinsically disordered proteins. Protein Science, 2011, 20, 1285-1297.	3.1	77
54	Backdoor opening mechanism in acetylcholinesterase based on Xâ€ray crystallography and molecular dynamics simulations. Protein Science, 2011, 20, 1114-1118.	3.1	59

#	Article	IF	CITATIONS
55	Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 2010, 187, 10-22.	1.7	557
56	Proteopedia: A collaborative, virtual 3D webâ€resource for protein and biomolecule structure and function. Biochemistry and Molecular Biology Education, 2010, 38, 341-342.	0.5	14
57	Long Route or Shortcut? A Molecular Dynamics Study of Traffic of Thiocholine within the Active-Site Gorge of Acetylcholinesterase. Biophysical Journal, 2010, 99, 4003-4011.	0.2	26
58	Molecular Basis of Reduced Glucosylceramidase Activity in the Most Common Gaucher Disease Mutant, N370S. Journal of Biological Chemistry, 2010, 285, 42105-42114.	1.6	31
59	New trends in protein expression. Journal of Structural Biology, 2010, 172, 1-2.	1.3	2
60	Characterization of gene-activated human acid-Â-glucosidase: Crystal structure, glycan composition, and internalization into macrophages. Glycobiology, 2010, 20, 24-32.	1.3	113
61	Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase. Protein Engineering, Design and Selection, 2009, 22, 641-648.	1.0	13
62	An encyclopedic effort to make 3D structures easier to understand. Trends in Biochemical Sciences, 2009, 34, 100-101.	3.7	12
63	6â€Aminoâ€6â€deoxyâ€5,6â€diâ€ <i>N</i> â€{ <i>N</i> â€2â€octyliminomethylidene)nojirimycin: Synthesis, Biolo Evaluation, and Crystal Structure in Complex with Acid βâ€Glucosidase. ChemBioChem, 2009, 10, 1480-1485.	gical	44
64	Assessment of disorder predictions in CASP8. Proteins: Structure, Function and Bioinformatics, 2009, 77, 210-216.	1.5	104
65	Assessment of CASP8 structure predictions for template free targets. Proteins: Structure, Function and Bioinformatics, 2009, 77, 50-65.	1.5	89
66	Amalgam, an axon guidance Drosophila adhesion protein belonging to the immunoglobulin superfamily: Over-expression, purification and biophysical characterization. Protein Expression and Purification, 2009, 63, 147-157.	0.6	13
67	The Quaternary Structure of Amalgam, a Drosophila Neuronal Adhesion Protein, Explains Its Dual Adhesion Properties. Biophysical Journal, 2009, 97, 2316-2326.	0.2	11
68	Structural Studies on Acetylcholinesterase and Paraoxonase Directed Towards Development of Therapeutic Biomolecules for the Treatment of Degenerative Diseases and Protection Against Chemical Threat Agents. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 183-199.	0.5	0
69	Directed Evolution of Serum Paraoxonase PON3 by Family Shuffling and Ancestor/Consensus Mutagenesis, and Its Biochemical Characterization. Biochemistry, 2009, 48, 6644-6654.	1.2	43
70	The Crystal Structure of a Complex of Acetylcholinesterase with a Bis-(â^')- <i>nor</i> -meptazinol Derivative Reveals Disruption of the Catalytic Triad. Journal of Medicinal Chemistry, 2009, 52, 2543-2549.	2.9	22
71	Crystallographic Snapshots of Nonaged and Aged Conjugates of Soman with Acetylcholinesterase, and of a Ternary Complex of the Aged Conjugate with Pralidoxime. Journal of Medicinal Chemistry, 2009, 52, 7593-7603.	2.9	81
72	Tools to Make 3D Structural Data More Comprehensible: Emovie & Proteopedia. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 169-182.	0.5	0

#	Article	IF	CITATIONS
73	Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1357-1366.	1.5	93
74	Control of the rate of evaporation in protein crystallization by the `microbatch under oil' method. Journal of Applied Crystallography, 2008, 41, 969-971.	1.9	15
75	Structural disorder serves as a weak signal for intracellular protein degradation. Proteins: Structure, Function and Bioinformatics, 2008, 71, 903-909.	1.5	96
76	Crystal structure of YagE, a putative DHDPSâ€like protein from <i>Escherichia coli K12</i> . Proteins: Structure, Function and Bioinformatics, 2008, 71, 2102-2108.	1.5	5
77	Inducedâ€fit or preexisting equilibrium dynamics? Lessons from protein crystallography and MD simulations on acetylcholinesterase and implications for structureâ€based drug design. Protein Science, 2008, 17, 601-605.	3.1	51
78	Protein production and purification. Nature Methods, 2008, 5, 135-146.	9.0	763
79	Acetylcholinesterase: How is structure related to function?. Chemico-Biological Interactions, 2008, 175, 3-10.	1.7	181
80	Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 2008, 18, 756-764.	2.6	864
81	Biophysical Characterization of the Unstructured Cytoplasmic Domain of the Human Neuronal Adhesion Protein Neuroligin 3. Biophysical Journal, 2008, 95, 1928-1944.	0.2	45
82	Flexibility of Aromatic Residues in the Active-Site Gorge of Acetylcholinesterase: X-ray versus Molecular Dynamics. Biophysical Journal, 2008, 95, 2500-2511.	0.2	104
83	Acid β-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Biological Chemistry, 2008, 389, 1361-1369.	1.2	43
84	Proteopedia - a scientific 'wiki' bridging the rift between 3D structure and function of biomacromolecules. Genome Biology, 2008, 9, R121.	13.9	98
85	Crystal Structure of Thioflavin T Bound to the Peripheral Site of <i>Torpedo californica</i> Acetylcholinesterase Reveals How Thioflavin T Acts as a Sensitive Fluorescent Reporter of Ligand Binding to the Acylation Site. Journal of the American Chemical Society, 2008, 130, 7856-7861.	6.6	119
86	Shoot-and-Trap: Use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11742-11747.	3.3	52
87	Structural Genomics and Structural Proteomics: A Global Perspective. , 2008, , 505-537.		0
88	Crystal Structures of Complexes of N-Butyl- and N-Nonyl-Deoxynojirimycin Bound to Acid β-Glucosidase. Journal of Biological Chemistry, 2007, 282, 29052-29058.	1.6	109
89	An idea whose time has come. Genome Biology, 2007, 8, 408.	13.9	6
90	3-D Structure of Serum Paraoxonase 1 Sheds Light on Its Activity, Stability, Solubility and Crystallizability. Arhiv Za Higijenu Rada I Toksikologiju, 2007, 58, 347-353.	0.4	30

#	Article	IF	CITATIONS
91	Use of a `caged' analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1115-1128.	2.5	40
92	RIKEN aids international structural genomics efforts. Nature, 2007, 445, 21-21.	13.7	14
93	Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnology Journal, 2007, 5, 579-590.	4.1	371
94	eMovie: a storyboard-based tool for making molecular movies. Trends in Biochemical Sciences, 2007, 32, 199-204.	3.7	27
95	A server and database for dipole moments of proteins. Nucleic Acids Research, 2007, 35, W512-W521.	6.5	166
96	Complexes of Alkylene-Linked Tacrine Dimers withTorpedo californicaAcetylcholinesterase:Â Binding of Bis(5)-tacrine Produces a Dramatic Rearrangement in the Active-Site Gorge. Journal of Medicinal Chemistry, 2006, 49, 5491-5500.	2.9	186
97	The X-Ray Structure of Human Acid-beta-Glucosidase. , 2006, , 85-96.		Ο
98	Eukaryotic expression: developments for structural proteomics. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1114-1124.	2.5	79
99	Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1232-1242.	2.5	113
100	Structural comparison of differently glycosylated forms of acid-β-glucosidase, the defective enzyme in Gaucher disease. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1458-1465.	2.5	42
101	Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO Journal, 2006, 25, 2746-2756.	3.5	160
102	Shedding UV Light on the Phase Problem. Structure, 2006, 14, 629-630.	1.6	1
103	Database and Comparative Identification of Prophages. , 2006, , 863-868.		Ο
104	The Crystal Structure of the Complex of the Anticancer Prodrug 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) with Torpedo californica Acetylcholinesterase Provides a Molecular Explanation for Its Cholinergic Action. Molecular Pharmacology, 2005, 67, 1874-1881.	1.0	36
105	The 3D structure of the anticancer prodrug CPT-11 with Torpedo californica acetylcholinesterase rationalizes its inhibitory action on AChE and its hydrolysis by butyrylcholinesterase and carboxylesterase. Chemico-Biological Interactions, 2005, 157-158, 153-157.	1.7	14
106	Inhibition of acetylcholinesterase by the anticancer prodrug CPT-11. Chemico-Biological Interactions, 2005, 157-158, 247-252.	1.7	35
107	HalX: an open-source LIMS (Laboratory Information Management System) for small- to large-scale laboratories. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 671-678.	2.5	23
108	Three-dimensional structure determination of proteins related to human health in their functional context at The Israel Structural Proteomics Center (ISPC). Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1364-1372.	2.5	8

#	Article	IF	CITATIONS
109	Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1426-1431.	2.5	228
110	Analysis of Genetic Polymorphisms in Acetylcholinesterase as Reflected in Different Populations. Current Alzheimer Research, 2005, 2, 207-218.	0.7	16
111	FoldIndex(C): a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 2005, 21, 3435-3438.	1.8	886
112	G protein-coupled receptors show unusual patterns of intrinsic unfolding. Protein Engineering, Design and Selection, 2005, 18, 103-110.	1.0	48
113	Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7493-7498.	3.3	71
114	X-ray Structure of Human Acid-β-Glucosidase Covalently Bound to Conduritol-B-Epoxide. Journal of Biological Chemistry, 2005, 280, 23815-23819.	1.6	102
115	Acetylcholinesterase: â€~classical' and â€~non-classical' functions and pharmacology. Current Opinion in Pharmacology, 2005, 5, 293-302.	1.7	438
116	Dynamic Mechanism of E2020 Binding to Acetylcholinesterase:  A Steered Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2005, 109, 23730-23738.	1.2	53
117	Crystal Packing Mediates Enantioselective Ligand Recognition at the Peripheral Site of Acetylcholinesterase. Journal of the American Chemical Society, 2005, 127, 11029-11036.	6.6	44
118	Molecular Determinants of Protein Halotolerance: Structural and Functional Studies of the Extremely Salt Tolerant Carbonic Anhydrases from Dunaliella salina. , 2005, , 503-515.		0
119	Natural protein engineering: a uniquely salt-tolerant, but not halophilic, Â-type carbonic anhydrase from algae proliferating in low- to hyper-saline environments. Protein Engineering, Design and Selection, 2004, 17, 191-200.	1.0	27
120	The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO Journal, 2004, 23, 4394-4405.	3.5	98
121	Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nature Structural and Molecular Biology, 2004, 11, 412-419.	3.6	569
122	A paradigm for single nucleotide polymorphism analysis: The case of the acetylcholinesterase gene. Human Mutation, 2004, 24, 408-416.	1.1	25
123	Additivity of Cationâ^'ĩ€ Interactions: An ab Initio Computational Study on Ï€â^'Cationâ^'Ĩ€ Sandwich Complexes. Journal of Physical Chemistry A, 2004, 108, 9400-9405.	1.1	29
124	The Complex of a Bivalent Derivative of Galanthamine withTorpedoAcetylcholinesterase Displays Drastic Deformation of the Active-Site Gorge:Â Implications for Structure-Based Drug Design. Journal of the American Chemical Society, 2004, 126, 15405-15411.	6.6	115
125	New directions in the treatment of Gaucher disease. Trends in Pharmacological Sciences, 2004, 25, 147-151.	4.0	95
126	Acetylcholinesterase: A Multifaceted Target for Structure-Based Drug Design of Anticholinesterase Agents for the Treatment of Alzheimer's Disease. Journal of Molecular Neuroscience, 2003, 20, 369-384.	1.1	104

#	Article	IF	CITATIONS
127	The Binding Site of Acetylcholine Receptor. Annals of the New York Academy of Sciences, 2003, 998, 93-100.	1.8	20
128	Design and Synthesis of Peptides That Bind α-Bungarotoxin with High Affinity and Mimic the Three-Dimensional Structure of the Binding Site of Acetylcholine Receptor. ChemInform, 2003, 34, no.	0.1	0
129	Identification, cDNA cloning, expression, crystallization and preliminary X-ray analysis of an exceptionally halotolerant carbonic anhydrase fromDunaliella salina. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1084-1086.	2.5	8
130	The intracellular domain of theDrosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins: Structure, Function and Bioinformatics, 2003, 53, 758-767.	1.5	60
131	Proteomic signatures: Amino acid and oligopeptide compositions differentiate among phyla. Proteins: Structure, Function and Bioinformatics, 2003, 54, 20-40.	1.5	130
132	Xâ€ray structure of human acidâ€Î²â€glucosidase, the defective enzyme in Gaucher disease. EMBO Reports, 2003, 4, 704-709.	2.0	244
133	How Does Huperzine A Enter and Leave the Binding Gorge of Acetylcholinesterase? Steered Molecular Dynamics Simulations. Journal of the American Chemical Society, 2003, 125, 11340-11349.	6.6	94
134	An unusual halotolerant α-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expression and Purification, 2003, 28, 151-157.	0.6	39
135	Acetylcholinesterase Complexed with Bivalent Ligands Related to Huperzine A:Â Experimental Evidence for Species-Dependent Proteinâ^'Ligand Complementarity. Journal of the American Chemical Society, 2003, 125, 363-373.	6.6	94
136	STRUCTURAL FEATURE OF ACHE INHIBITOR HUPERZINE B IN NATURE AND IN THE BINDING SITE OF ACHE: DENSITY FUNCTIONAL THEORY STUDY COMBINED WITH IR DETERMINATION. Journal of Theoretical and Computational Chemistry, 2002, 01, 81-92.	1.8	0
137	The Relationship between Binding Models of TMA with Furan and Imidazole and the Molecular Electrostatic Potentials:  DFT and MP2 Computational Studies. Journal of Physical Chemistry A, 2002, 106, 157-164.	1.1	19
138	A Neutral Molecule in a Cation-binding Site: Specific Binding of a PEG-SH to Acetylcholinesterase from Torpedo californica. Journal of Molecular Biology, 2002, 320, 721-725.	2.0	40
139	Structure of a complex of the potent and specific inhibitor BW284C51 withTorpedo californicaacetylcholinesterase. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1765-1771.	2.5	38
140	Evidence for the formation of disulfide radicals in protein crystals upon X-ray irradiation. Journal of Synchrotron Radiation, 2002, 9, 342-346.	1.0	63
141	Design and synthesis of peptides that bind α-bungarotoxin with high affinity and mimic the three-dimensional structure of the binding-site of acetylcholine receptor. Biophysical Chemistry, 2002, 100, 293-305.	1.5	25
142	Theoretical Insight into the Interactions of TMA-Benzene and TMA-Pyrrole with B3LYP Density-Functional Theory (DFT) and ab Initio Second Order MÃIlerâ^Plesset Perturbation Theory (MP2) Calculations. Journal of Physical Chemistry A, 2001, 105, 5431-5437.	1.1	45
143	Quantum/Classical Mechanical Comparison of Cationâ~ï€ Interactions between Tetramethylammonium and Benzene. Journal of Physical Chemistry A, 2001, 105, 1326-1333.	1.1	69
144	A Structure-Based Design Approach to the Development of Novel, Reversible AChE Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 3203-3215.	2.9	52

#	Article	IF	CITATIONS
145	The Binding Site of Acetylcholine Receptor as Visualized in the X-Ray Structure of a Complex between α-Bungarotoxin and a Mimotope Peptide. Neuron, 2001, 32, 265-275.	3.8	125
146	Histochemical method for characterization of enzyme crystals: application to crystals ofTorpedo californicaacetylcholinesterase. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1348-1350.	2.5	1
147	Noncovalent interaction or chemical bonding between alkaline earth cations and benzene? A quantum chemistry study using MP2 and density-functional theory methods. Chemical Physics Letters, 2001, 349, 113-122.	1.2	48
148	Structural studies on vertebrate and invertebrate acetylcholinesterases and their complexes with functional ligands. Drug Development Research, 2000, 50, 573-583.	1.4	11
149	AutoDep: a web-based system for deposition and validation of macromolecular structural information. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 828-841.	2.5	12
150	Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1385-1394.	2.5	260
151	Apotheosis, not apocalypse: methods in protein crystallography. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1510-1511.	2.5	4
152	Threeâ€dimensional structures of <i>Drosophila melanogaster</i> acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science, 2000, 9, 1063-1072.	3.1	282
153	Specific chemical and structural damage to proteins produced by synchrotron radiation. Proceedings of the United States of America, 2000, 97, 623-628.	3.3	438
154	Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 296, 713-735.	2.0	137
155	How Does Ammonium Interact with Aromatic Groups? A Density Functional Theory (DFT/B3LYP) Investigation. Journal of Physical Chemistry A, 2000, 104, 9573-9580.	1.1	68
156	A preliminary comparison of structural models for catalytic intermediates of acetylcholinesterase. Chemico-Biological Interactions, 1999, 119-120, 43-52.	1.7	27
157	Structure of acetylcholinesterase complexed with E2020 (Aricept®): implications for the design of new anti-Alzheimer drugs. Structure, 1999, 7, 297-307.	1.6	667
158	Crystal Structures of Aged Phosphonylated Acetylcholinesterase:  Nerve Agent Reaction Products at the Atomic Level,. Biochemistry, 1999, 38, 7032-7039.	1.2	268
159	Structure of acetylcholinesterase complexed with (â^')-galanthamine at 2.3 Ã resolution. FEBS Letters, 1999, 463, 321-326.	1.3	265
160	A Modular Treatment of Molecular Traffic Through the Active Site of Cholinesterase. Biophysical Journal, 1999, 77, 2430-2450.	0.2	52
161	Reaction Products of Acetylcholinesterase and VX Reveal a Mobile Histidine in the Catalytic Triad. Journal of the American Chemical Society, 1999, 121, 9883-9884.	6.6	150
162	Effect of Mutations within the Peripheral Anionic Site on the Stability of Acetylcholinesterase. Molecular Pharmacology, 1999, 55, 982-992.	1.0	40

#	Article	IF	CITATIONS
163	Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica. Journal of Physiology (Paris), 1998, 92, 191-194.	2.1	86
164	Static Laue Diffraction Studies on Acetylcholinesterase. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1359-1366.	2.5	29
165	Protein Data Bank (PDB): Database of Three-Dimensional Structural Information of Biological Macromolecules. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1078-1084.	2.5	613
166	Crystal Structures of "Aged―Phosphorylated and Phosphonylated Torpedo Californica Acetylcholinesterase. , 1998, , 425-431.		3
167	Structural and Functional Studies on Acetylcholinesterase. , 1998, , 25-33.		1
168	Protein Data Bank Deposits. , 1998, 282, 1991f-1991.		8
169	3D Structure of a Complex of the Anti-Alzheimer Drug, E2020, with Acetylcholinesterase at 2.5Ã Resolution. , 1998, , 469-475.		0
170	Assembly of Acetylcholinesterase Subunits in vitro. , 1998, , 442-443.		2
171	Crystallographic Studies on Complexes of Acetylcholinesterase with the Natural Cholinesterase Inhibitors Fasciculin and Huperzine A. Advances in Behavioral Biology, 1998, , 523-530.	0.2	Ο
172	[29] Protein data bank archives of three-dimensional macromolecular structures. Methods in Enzymology, 1997, 277, 556-571.	0.4	163
173	Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A. Nature Structural and Molecular Biology, 1997, 4, 57-63.	3.6	373
174	Bridging the gap. Nature Structural Biology, 1997, 4, 517-517.	9.7	3
175	External and internal electrostatic potentials of cholinesterase models. Journal of Molecular Graphics and Modelling, 1997, 15, 318-327.	1.3	63
176	How Three-Fingered Snake Toxins Recognise Their Targets. , 1997, , 303-315.		1
177	The X-ray Structure of a Transition State Analog Complex Reveals the Molecular Origins of the Catalytic Power and Substrate Specificity of Acetylcholinesterase. Journal of the American Chemical Society, 1996, 118, 2340-2346.	6.6	358
178	Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function. FEBS Letters, 1996, 386, 65-71.	1.3	58
179	Soluble monomeric acetylcholinesterase from mouse: Expression, purification, and crystallization in complex with fasciculin. Protein Science, 1996, 5, 672-679.	3.1	56
180	Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nature Structural Biology, 1996, 3, 452-458.	9.7	207

#	Article	IF	CITATIONS
181	Letter to the Editor. Journal of Biomolecular Structure and Dynamics, 1996, 13, 583-583.	2.0	Ο
182	Biochemical Evaluation of Photolabile Precursors of Choline and of Carbamylcholine for Potential Time-Resolved Crystallographic Studies on Cholinesterasesâ€. Biochemistry, 1996, 35, 10854-10861.	1.2	27
183	The Protein Data Bank: Current status and future challenges. Journal of Research of the National Institute of Standards and Technology, 1996, 101, 231.	0.4	21
184	Crystal structure of an acetylcholinesterase–fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure, 1995, 3, 1355-1366.	1.6	232
185	PDBBrowse — a graphics interface to the Brookhaven Protein Data Bank. Nature, 1995, 374, 572-574.	13.7	42
186	Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and Xâ€ray crystallography. Protein Science, 1994, 3, 188-197.	3.1	158
187	A Metastable State of Torpedo californica Acetylcholinesterase Generated by Modification with Organomercurials. Biochemistry, 1994, 33, 14407-14418.	1.2	24
188	Three-dimensional structures of acetylcholinesterase and of its complexes with anticholinesterase agents. Biochemical Society Transactions, 1994, 22, 745-749.	1.6	44
189	Relationship between sequence conservation and threeâ€dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 1993, 2, 366-382.	3.1	506
190	Comparison of the crystal structures of genetically engineered human manganese superoxide dismutase and manganese superoxide dismutase from <i>thermus thermophilus</i> : Differences in dimer–dimer interaction. Protein Science, 1993, 2, 814-825.	3.1	57
191	The structure of the complex between avidin and the dye, 2-(4'-hydroxyazobenzene) benzoic acid (HABA). FEBS Letters, 1993, 328, 165-168.	1.3	58
192	Acetylcholinesterase: electrostatic steering increases the rate of ligand binding. Biochemistry, 1993, 32, 401-403.	1.2	150
193	Chapter 15: Structure and functions of acetylcholinesterase and butyrylcholinesterase. Progress in Brain Research, 1993, 98, 139-146.	0.9	125
194	Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9031-9035.	3.3	869
195	A Structural Model For Sequence-Specific Proflavin-DNA Interactions DuringIn VitroFrameshift Mutagenesis. Journal of Biomolecular Structure and Dynamics, 1992, 10, 317-331.	2.0	7
196	Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10827-10831.	3.3	292
197	The $\hat{I} \pm / \hat{I}^2$ hydrolase fold. Protein Engineering, Design and Selection, 1992, 5, 197-211.	1.0	1,887
198	Acetylcholinesterase: structure and use as a model for specific cation—protein interactions. Current Opinion in Structural Biology, 1992, 2, 721-729.	2.6	87

#	Article	IF	CITATIONS
199	Recommendations for Nomenclature in Cholinesterases. , 1992, , 285-288.		40
200	Site-directed mutagenesis of active-site-related residues inTorpedoacetylcholinesterase Presence of a glutamic acid in the catalytic triad. FEBS Letters, 1992, 309, 421-423.	1.3	18
201	Three-dimensional structures of bulge-containing DNA fragments. Journal of Molecular Biology, 1992, 225, 397-431.	2.0	94
202	Site-Directed Mutagenesis of Functional Residues in Torpedo Acetylcholinesterase. , 1992, , 177-183.		3
203	Analysis of dihedral angles distribution: The doublets distribution determines polypeptides conformations. Biopolymers, 1990, 30, 499-508.	1.2	8
204	[9] Crystal forms of avidin. Methods in Enzymology, 1990, 184, 90-93.	0.4	5
205	A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins: Structure, Function and Bioinformatics, 1989, 5, 355-373.	1.5	234
206	Characterization of crystals of genetically engineered human manganese superoxide dismutase. Journal of Molecular Biology, 1989, 206, 787-788.	2.0	24
207	The three-dimensional structure of a DNA duplex containing looped-out bases. Nature, 1988, 334, 82-84.	13.7	103
208	Crystal structure of 15-mer DNA duplex containing unpaired bases. Nature, 1988, 334, 85-86.	13.7	77
209	Conformational transitions of synthetic DNA sequences with inserted bases, related to the dodecamer d(CGCGAATTCGCG). Nucleic Acids Research, 1987, 15, 3877-3890.	6.5	16
210	Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. Journal of Molecular Biology, 1987, 198, 445-467.	2.0	195
211	Mechanism of oligonucleotide loop formation in solution. Biochemistry, 1986, 25, 7417-7423.	1.2	48
212	Constrained-restrained least-squares (CORELS) refinement of proteins and nucleic acids. Methods in Enzymology, 1985, 115, 271-303.	0.4	57
213	Adenine-guanine base pairing in ribosomal RNA. Nucleic Acids Research, 1982, 10, 2701-2708.	6.5	82
214	How flexible is the furanose ring? 1. A comparison of experimental and theoretical studies. Journal of the American Chemical Society, 1982, 104, 270-278.	6.6	198
215	Crystal structure of a eukaryotic initiator tRNA. Nature, 1979, 278, 188-190.	13.7	160
216	Preliminary X-ray diffraction studies on 2 fe-ferredoxin from Halobacterium of the Dead Sea. Journal of Molecular Biology, 1979, 134, 375-377.	2.0	9

#	Article	IF	CITATIONS
217	Crystal structure of demetallized concanavalin A: the metal-binding region. Journal of Molecular Biology, 1979, 131, 137-155.	2.0	57
218	Crystal structure of yeast phenylalanine transfer RNA. Journal of Molecular Biology, 1978, 123, 607-630.	2.0	377
219	Crystal structure of yeast phenylalanine transfer RNA. Journal of Molecular Biology, 1978, 123, 631-660.	2.0	301
220	The effect of binding of metal ions on the three-dimensional structure of demetallized concanavalin A. FEBS Letters, 1978, 95, 54-56.	1.3	8
221	RNA - ligand interactions:(I) magnesium binding sites in yeast tRNAPhe. Nucleic Acids Research, 1977, 4, 2811-2820.	6.5	238
222	Idealized atomic coordinates of yeast phenylalanine transfer RNA. Biochemical and Biophysical Research Communications, 1976, 68, 89-96.	1.0	103
223	Ï€ Turn is a conformational pattern in RNA loops and bends. Nature, 1976, 260, 645-646.	13.7	51
224	Hydrogen bonding in yeast phenylalanine transfer RNA Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 4866-4870.	3.3	127
225	Crystal structure of a naturally occurring dinucleoside phosphate: Uridylyl 3′,5′-adenosine phosphate model for RNA chain folding. Journal of Molecular Biology, 1972, 66, 403-421.	2.0	188