
Steven Dodsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/732658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, <i>Nicotiana</i> section <i>Suaveolentes</i> (Solanaceae). Annals of Botany, 2023, 131, 123-142.	2.9	16
2	A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life. Systematic Biology, 2022, 71, 301-319.	5.6	107
3	Phylogenomic discordance suggests polytomies along the backbone of the large genus <i>Solanum</i> . American Journal of Botany, 2022, 109, 580-601.	1.7	36
4	Genomic insights into recent species divergence in <i>Nicotiana benthamiana</i> and natural variation in <i>Rdr1</i> gene controlling viral susceptibility. Plant Journal, 2022, 111, 7-18.	5.7	9
5	The ecology of palm genomes: repeatâ€associated genome size expansion is constrained by aridity. New Phytologist, 2022, 236, 433-446.	7.3	10
6	Combination of Sanger and target-enrichment markers supports revised generic delimitation in the problematic â€Urera clade' of the nettle family (Urticaceae). Molecular Phylogenetics and Evolution, 2021, 158, 107008.	2.7	11
7	Paraphyly of the genus Boehmeria (Urticaceae): a response to Liang et al. â€~Relationships among Chinese Boehmeria species and the evolution of various clade'. Plant Systematics and Evolution, 2021, 307, 1.	0.9	Ο
8	Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution. Scientific Reports, 2021, 11, 6858.	3.3	30
9	Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA. Annals of Botany, 2021, 128, 835-848.	2.9	13
10	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	8.9	14
11	Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the <i>Lomatium packardiae/L. anomalum</i> clade of the <i>L. triternatum</i> (Apiaceae) complex. American Journal of Botany, 2021, 108, 1217-1233.	1.7	12
12	A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. American Journal of Botany, 2021, 108, 1087-1111.	1.7	53
13	Exploring Angiosperms353: Developing and applying a universal toolkit for flowering plant phylogenomics. Applications in Plant Sciences, 2021, 9, .	2.1	13
14	Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. American Journal of Botany, 2021, 108, 1166-1180.	1.7	35
15	Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. American Journal of Botany, 2021, 108, 1059-1065.	1.7	36
16	Repeated parallel losses of inflexed stamens in Moraceae: Phylogenomics and generic revision of the tribe Moreae and the reinstatement of the tribe Olmedieae (Moraceae). Taxon, 2021, 70, 946-988.	0.7	12
17	989. NICOTIANA WALPA. Curtis's Botanical Magazine, 2021, 38, 298-308.	0.3	3
18	SPECIES DELIMITATION IN <scp><i>NICOTIANA</i></scp> SECT. <scp><i>SUAVEOLENTES</i></scp> (SOLANACEAE): RECIPROCAL ILLUMINATION LEADS TO RECOGNITION OF MANY NEW SPECIES. Curtis's Botanical Magazine, 2021, 38, 266-286.	0.3	17

STEVEN DODSWORTH

#	Article	IF	CITATIONS
19	990. NICOTIANA INGULBA. Curtis's Botanical Magazine, 2021, 38, 309-318.	0.3	5
20	Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. Molecular Phylogenetics and Evolution, 2020, 144, 106672.	2.7	23
21	Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	9.3	87
22	On the origin of giant seeds: the macroevolution of the double coconut (<i>Lodoicea maldivica</i>) and its relatives (Borasseae, Arecaceae). New Phytologist, 2020, 228, 1134-1148.	7.3	15
23	Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover. Genes, 2020, 11, 216.	2.4	6
24	Reconstructing phylogenetic relationships based on repeat sequence similarities. Molecular Phylogenetics and Evolution, 2020, 147, 106766.	2.7	35
25	Non-destructive genome skimming for aquatic copepods. Conservation Genetics Resources, 2020, 12, 515-520.	0.8	1
26	Extensive plastid-nuclear discordance in a recent radiation of Nicotiana section Suaveolentes (Solanaceae). Botanical Journal of the Linnean Society, 2020, 193, 546-559.	1.6	19
27	Repetitive DNA Dynamics and Polyploidization in the Genus Nicotiana (Solanaceae). Compendium of Plant Genomes, 2020, , 85-99.	0.5	4
28	Hyb-Seq for Flowering Plant Systematics. Trends in Plant Science, 2019, 24, 887-891.	8.8	98
29	Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Frontiers in Plant Science, 2019, 10, 1102.	3.6	124
30	Digest: Linking coordinated shifts in plant resource allocation to a chromosomal inversion*. Evolution; International Journal of Organic Evolution, 2019, 73, 1318-1319.	2.3	0
31	Phylogenetic signal of genomic repeat abundances can be distorted by random homoplasy: a case study from hominid primates. Zoological Journal of the Linnean Society, 2019, 185, 543-554.	2.3	11
32	The Origin and Diversification of the Hyperdiverse Flora in the ChocÃ ³ Biogeographic Region. Frontiers in Plant Science, 2019, 10, 1328.	3.6	45
33	A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Systematic Biology, 2019, 68, 594-606.	5.6	371
34	A roadmap for global synthesis of the plant tree of life. American Journal of Botany, 2018, 105, 614-622.	1.7	38
35	Digest: Drivers of coral diversification in a major marine biodiversity hotspot*. Evolution; International Journal of Organic Evolution, 2018, 72, 406-408.	2.3	4
36	Mining threatens Colombian ecosystems. Science, 2018, 359, 1475-1475.	12.6	33

#	Article	IF	CITATIONS
37	UNEXPECTED DIVERSITY OF AUSTRALIAN TOBACCO SPECIES (<i>NICOTIANA</i> SECTION) Tj ETQq1 1 0.784314	f rgBT	/Overlock 10 T
38	Potential of Herbariomics for Studying Repetitive DNA in Angiosperms. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	7
39	Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genomics, 2018, 19, 578.	2.8	15
40	Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes, 2018, 9, 88.	2.4	244
41	Petal, Sepal, or Tepal? B-Genes and Monocot Flowers. Trends in Plant Science, 2017, 22, 8-10.	8.8	17
42	Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Systematics and Evolution, 2017, 303, 1001-1012.	0.9	71
43	Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant Systematics and Evolution, 2017, 303, 1013-1020.	0.9	50
44	848. PLATYSTELE MISERA. Curtis's Botanical Magazine, 2016, 33, 294-302.	0.3	0
45	Using genomic repeats for phylogenomics: a case study in wild tomatoes (<i>Solanum</i> section <i>Lycopersicon</i> : Solanaceae). Biological Journal of the Linnean Society, 2016, 117, 96-105.	1.6	44
46	ls post-polyploidization diploidization the key to the evolutionary success of angiosperms?. Botanical Journal of the Linnean Society, 2016, 180, 1-5.	1.6	154
47	Digests: Salamanders' slow slither into genomic gigantism*. Evolution; International Journal of Organic Evolution, 2016, 70, 2915-2916.	2.3	5
48	849. PLATYSTELE OVATILABIA. Curtis's Botanical Magazine, 2016, 33, 303-309.	0.3	0
49	Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics. Genome Biology and Evolution, 2016, 8, 161-175.	2.5	157
50	Genome size diversity in angiosperms and its influence on gene space. Current Opinion in Genetics and Development, 2015, 35, 73-78.	3.3	73
51	The effect of polyploidy and hybridization on the evolution of floral colour in <i>Nicotiana</i> (Solanaceae). Annals of Botany, 2015, 115, 1117-1131.	2.9	41
52	Genome skimming for next-generation biodiversity analysis. Trends in Plant Science, 2015, 20, 525-527.	8.8	209
53	Genomic Repeat Abundances Contain Phylogenetic Signal. Systematic Biology, 2015, 64, 112-126.	5.6	126
54	Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii. Journal of Experimental Botany, 2012, 63, 4811-4819.	4.8	18

#	Article	IF	CITATIONS
55	Characterization of <i>Linaria KNOX</i> genes suggests a role in petalâ€spur development. Plant Journal, 2011, 68, 703-714.	5.7	44
56	A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Developmental Biology, 2009, 336, 1-9.	2.0	109