Tautgirdas Ruzgas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7326416/publications.pdf

Version: 2024-02-01

41344 64796 7,138 142 49 79 citations h-index g-index papers 143 143 143 5494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrogels and Cubic Liquid Crystals for Non-Invasive Sampling of Low-Molecular-Weight Biomarkers—An Explorative In Vivo Study. Pharmaceutics, 2022, 14, 313.	4.5	1
2	Glucose-to-Resistor Transduction Integrated into a Radio-Frequency Antenna for Chip-less and Battery-less Wireless Sensing. ACS Sensors, 2022, 7, 1222-1234.	7.8	11
3	Non-Invasive, Topical Sampling of Potential, Low-Molecular Weight, Skin Cancer Biomarkers: A Study on Healthy Volunteers. Analytical Chemistry, 2022, 94, 5856-5865.	6.5	8
4	Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine. Bioelectrochemistry, 2021, 138, 107720.	4.6	13
5	Non-invasive skin sampling of tryptophan/kynurenine ratio in vitro towards a skin cancer biomarker. Scientific Reports, 2021, 11, 678.	3.3	7
6	Paper-Based Competitive Immunochromatography Coupled with an Enzyme-Modified Electrode to Enable the Wireless Monitoring and Electrochemical Sensing of Cotinine in Urine. Sensors, 2021, 21, 1659.	3.8	13
7	Probing Skin Barrier Recovery on Molecular Level Following Acute Wounds: An In Vivo/Ex Vivo Study on Pigs. Biomedicines, 2021, 9, 360.	3.2	5
8	Battery-free radio frequency wireless sensor for bacteria based on their degradation of gelatin-fatty acid composite films. Electrochimica Acta, 2021, 381, 138275.	5.2	3
9	Gold-modified paper as microfluidic substrates with reduced biofouling in potentiometric ion sensing. Sensors and Actuators B: Chemical, 2021, 344, 130200.	7.8	22
10	Franz cells for facile biosensor evaluation: A case of HRP/SWCNT-based hydrogen peroxide detection via amperometric and wireless modes. Biosensors and Bioelectronics, 2021, 191, 113420.	10.1	10
11	The Potential of Caffeic Acid Lipid Nanoparticulate Systems for Skin Application: In Vitro Assays to Assess Delivery and Antioxidant Effect. Nanomaterials, 2021, 11, 171.	4.1	26
12	Catalase Activity in Keratinocytes, Stratum Corneum, and Defatted Algae Biomass as a Potential Skin Care Ingredient. Biomedicines, 2021, 9, 1868.	3.2	4
13	Skin hydration dynamics investigated by electrical impedance techniques in vivo and in vitro. Scientific Reports, 2020, 10, 17218.	3.3	28
14	Effect of IFN- \hat{I}^3 on the kynurenine/tryptophan ratio in monolayer-cultured keratinocytes and a 3D reconstructed human epidermis model. Journal of Dermatological Science, 2020, 99, 177-184.	1.9	8
15	Characterization of nano-layered solid-contact ion selective electrodes by simultaneous potentiometry and quartz crystal microbalance with dissipation. Analytica Chimica Acta, 2020, 1128, 19-30.	5.4	15
16	Visualisation of H2O2 penetration through skin indicates importance to develop pathway-specific epidermal sensing. Mikrochimica Acta, 2020, 187, 656.	5.0	8
17	Design and Characterization of Ethosomes for Transdermal Delivery of Caffeic Acid. Pharmaceutics, 2020, 12, 740.	4.5	46
18	Highly Stable Passive Wireless Sensor for Protease Activity Based on Fatty Acid-Coupled Gelatin Composite Films. Analytical Chemistry, 2020, 92, 13110-13117.	6.5	12

#	Article	IF	CITATIONS
19	Wireless, Batteryâ€Less Biosensors Based on Direct Electron Transfer Reactions. ChemElectroChem, 2019, 6, 5167-5171.	3.4	13
20	PVC-Based Ion-Selective Electrodes with a Silicone Rubber Outer Coating with Improved Analytical Performance. Analytical Chemistry, 2019, 91, 10524-10531.	6.5	57
21	Sensing by wireless reading Ag/AgCl redox conversion on RFID tag: universal, battery-less biosensor design. Scientific Reports, 2019, 9, 12948.	3.3	25
22	The Effect of UVB Irradiation and Oxidative Stress on the Skin Barrierâ€"A New Method to Evaluate Sun Protection Factor Based on Electrical Impedance Spectroscopy. Sensors, 2019, 19, 2376.	3.8	20
23	New concepts for transdermal delivery of oxygen based on catalase biochemical reactions studied by oxygen electrode amperometry. Journal of Controlled Release, 2019, 306, 121-129.	9.9	6
24	Polyphenol-hydrogen peroxide reactions in skin: InÂvitro model relevant to study ROS reactions at inflammation. Analytica Chimica Acta, 2019, 1075, 91-97.	5.4	20
25	Nanoplatelet MoS2 arrays decorated with Pt nanoparticles for non-enzymatic detection of hydrogen peroxide. Journal of Electroanalytical Chemistry, 2019, 839, 274-282.	3.8	15
26	Impact of molecular linker size on physicochemical properties of assembled gold nanoparticle mono-/multi-layers and their applicability for functional binding of biomolecules. Journal of Colloid and Interface Science, 2019, 543, 307-316.	9.4	5
27	Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents. Biosensors and Bioelectronics, 2019, 128, 159-165.	10.1	8
28	Pool boiling of HFE-7200 on nanoparticle-coating surfaces: Experiments and heat transfer analysis. International Journal of Heat and Mass Transfer, 2019, 133, 548-560.	4.8	45
29	Optimization of sample preparation for transporter protein quantification in tissues by LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 9-15.	2.8	2
30	In-vitro model for assessing glucose diffusion through skin. Biosensors and Bioelectronics, 2018, 110, 175-179.	10.1	26
31	Proteolytic degradation of gelatin-tannic acid multilayers. Journal of Colloid and Interface Science, 2018, 526, 244-252.	9.4	19
32	Highly sensitive detection and quantification of the secreted bacterial benevolence factor RoxP using a capacitive biosensor: A possible early detection system for oxidative skin diseases. PLoS ONE, 2018, 13, e0193754.	2.5	17
33	Electrochemical monitoring of native catalase activity in skin using skin covered oxygen electrode. Biosensors and Bioelectronics, 2017, 93, 9-13.	10.1	23
34	Development of a Plastic Membrane Containing Micro-hole(s) for a Potential Bio-sensing Application. Procedia Technology, 2017, 27, 252-253.	1.1	0
35	The effects of polar excipients transcutol and dexpanthenol on molecular mobility, permeability, and electrical impedance of the skin barrier. Journal of Colloid and Interface Science, 2016, 479, 207-220.	9.4	51
36	<i>In Situ</i> Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors. Analytical Chemistry, 2016, 88, 3009-3014.	6.5	34

#	Article	IF	CITATIONS
37	Prediction of wastewater quality using amperometric bioelectronic tongues. Biosensors and Bioelectronics, 2016, 75, 375-382.	10.1	22
38	Amperometric monitoring of quercetin permeation through skin membranes. International Journal of Pharmaceutics, 2015, 496, 636-643.	5.2	8
39	Determination of Total Protein Concentration in Solution Using Gold Electrode Modified with Silver Nanoparticles. Electroanalysis, 2015, 27, 253-257.	2.9	1
40	Textile-based sampling for potentiometric determination of ions. Analytica Chimica Acta, 2015, 877, 71-79.	5.4	38
41	Amperometric In Vitro Monitoring of Penetration through Skin Membrane. Electroanalysis, 2015, 27, 111-117.	2.9	5
42	Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission. PLoS ONE, 2014, 9, e109104.	2.5	62
43	A QCM-D Study of Reduced Antibody Fragments Immobilized on Planar Gold and Gold Nanoparticle Modified Sensor Surfaces. Key Engineering Materials, 2014, 605, 340-343.	0.4	5
44	Comparison of bioelectrocatalysis at Trichaptum abietinum and Trametes hirsuta laccase modified electrodes. Electrochimica Acta, 2014, 130, 141-147.	5.2	15
45	Bioelectrocatalytic reduction of oxygen at gold nanoparticles modified with laccase. Bioelectrochemistry, 2014, 95, 1-6.	4.6	36
46	The influence of nanoparticles on enzymatic bioelectrocatalysis. RSC Advances, 2014, 4, 38164-38168.	3.6	35
47	Quantification of BSA concentration by using Ag electrochemistry in chloride solution: extension of the linear range. Electrochimica Acta, 2014, 135, 351-355.	5.2	3
48	Effects of surfactants and thermodynamic activity of model active ingredient on transport over plant leaf cuticle. Colloids and Surfaces B: Biointerfaces, 2013, 103, 572-579.	5.0	11
49	Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient. Biophysical Journal, 2013, 104, 2639-2650.	0.5	68
50	Flexible micro(bio)sensors for quantitative analysis of bioanalytes in a nanovolume of human lachrymal liquid. Analytical and Bioanalytical Chemistry, 2013, 405, 3871-3879.	3.7	23
51	Biofuel cell as a power source for electronic contact lenses. Biosensors and Bioelectronics, 2012, 37, 38-45.	10.1	190
52	On the Possibility of Uphill Intramolecular Electron Transfer in Multicopper Oxidases: Electrochemical and Quantum Chemical Study of Bilirubin Oxidase. Electroanalysis, 2012, 24, 1524-1540.	2.9	49
53	Impact of the Gold Support on the Electrocatalytic Oxidation of Sugars at Enzymeâ€Modified Electrodes. Electroanalysis, 2011, 23, 927-930.	2.9	13
54	Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon. Biosensors and Bioelectronics, 2010, 25, 1001-1007.	10.1	53

#	Article	IF	CITATIONS
55	Laccase–gold nanoparticle assisted bioelectrocatalytic reduction of oxygen. Electrochemistry Communications, 2010, 12, 933-935.	4.7	56
56	Polymer multilayer film formation studied by in situ ellipsometry and electrochemistry. Bioelectrochemistry, 2009, 76, 153-161.	4.6	33
57	Electrochemical evidence of self-substrate inhibition as functions regulation for cellobiose dehydrogenase from Phanerochaete chrysosporium. Bioelectrochemistry, 2009, 76, 42-52.	4.6	9
58	Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Analytical Biochemistry, 2009, 384, 11-19.	2.4	27
59	Simultaneous use of electrochemistry and chemiluminescence to detect reactive oxygen species produced by human neutrophils. Cell Biology International, 2008, 32, 1486-1496.	3.0	15
60	Transistorâ€Like Behavior of a Fungal Laccase. Angewandte Chemie - International Edition, 2008, 47, 7270-7274.	13.8	24
61	Monitoring of <i>Saccharomyces cerevisiae</i> Cell Proliferation on Thiol-Modified Planar Gold Microelectrodes Using Impedance Spectroscopy. Langmuir, 2008, 24, 9066-9073.	3.5	54
62	Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1364-1369.	1.0	140
63	Activity of lactoperoxidase when adsorbed on protein layers. Talanta, 2008, 76, 1159-1164.	5.5	10
64	A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Physical Chemistry Chemical Physics, 2008, 10, 6093.	2.8	118
65	Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Lab on A Chip, 2008, 8, 323-329.	6.0	53
66	Amperometric Response from the Glycolytic versus the Pentose Phosphate Pathway in <i>Saccharomyces cerevisiae </i> Cells. Analytical Chemistry, 2007, 79, 8919-8926.	6.5	34
67	On-Chip Determination of Dopamine Exocytosis Using Mercaptopropionic Acid Modified Microelectrodes. Electroanalysis, 2007, 19, 263-271.	2.9	71
68	The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 2007, 22, 1820-1824.	10.1	128
69	Characterization of two new multiforms of Trametes pubescens laccase. Bioorganic Chemistry, 2007, 35, 35-49.	4.1	38
70	Amperometric monitoring of redox activity in intact, permeabilised and lyophilised cells of the yeast Hansenula polymorpha. Electrochemistry Communications, 2007, 9, 1480-1485.	4.7	11
71	Direct Electron TransferA Favorite Electron Route for Cellobiose Dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Langmuir, 2006, 22, 10801-10806.	3.5	56
72	Autoreduction andÂaggregation ofÂfungal laccase inÂsolution phase: possible correlation with aÂresting form ofÂlaccase. Biochimie, 2006, 88, 1275-1285.	2.6	28

#	Article	IF	CITATIONS
73	Laccase-based biosensors for monitoring lignin. Enzyme and Microbial Technology, 2006, 39, 835-840.	3.2	30
74	Electrochemical characterization and application of azurin-modified gold electrodes for detection of superoxide. Biosensors and Bioelectronics, 2006, 22, 213-219.	10.1	22
75	Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochemistry Communications, 2006, 8, 899-903.	4.7	87
76	Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme and Microbial Technology, 2006, 39, 841-847.	3.2	61
77	Direct Heterogeneous Electron Transfer Reactions ofTrametes hirsuta Laccase at Bare and Thiol-Modified Gold Electrodes. Electroanalysis, 2006, 18, 1901-1908.	2.9	88
78	Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosensors and Bioelectronics, 2005, 21, 608-617.	10.1	71
79	A steady-state and flow-through cell for screen-printed eight-electrode arrays. Analytica Chimica Acta, 2005, 531, 165-172.	5.4	20
80	Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry, 2005, 67, 115-124.	4.6	212
81	Direct Electrochemistry of Proteins and Enzymes. Perspectives in Bioanalysis, 2005, , 517-598.	0.3	50
82	Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes. Biosensors and Bioelectronics, 2005, 20, 2010-2018.	10.1	50
83	Direct electron transfer between copper-containing proteins and electrodes. Biosensors and Bioelectronics, 2005, 20, 2517-2554.	10.1	568
84	Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Biochemical Journal, 2005, 385, 745-754.	3.7	155
85	Characterization of graphite electrodes modified with laccases fromTrametes hirsutaandCerrena unicolorand their use for flow injection amperometric determination of some phenolic compounds. International Journal of Environmental Analytical Chemistry, 2005, 85, 753-770.	3.3	15
86	Spraying Enzymes in Microemulsions of AOT in Nonpolar Organic Solvents for Fabrication of Enzyme Electrodes. Analytical Chemistry, 2005, 77, 7074-7079.	6.5	16
87	Multivariate data analysis of dynamic amperometric biosensor responses from binary analyte mixtures?application of sensitivity correction algorithms. Talanta, 2005, 65, 298-305.	5.5	11
88	Amperometric detection of mono- and diphenols at laccase-modified graphite electrode: correlation between sensitivity and substrate structure. Talanta, 2005, 66, 1219-1224.	5.5	104
89	Development of a Laccaseâ€Modified Electrode for Amperometric Detection of Mono―and Diphenols. The Influence of Enzyme Storage Method. Analytical Letters, 2004, 37, 1497-1513.	1.8	11
90	Spectroelectrochemical study of heme- and molybdopterin cofactor-containing chicken liver sulphite oxidase. Bioelectrochemistry, 2004, 63, 49-53.	4.6	17

#	Article	IF	Citations
91	Direct heterogeneous electron transfer of theophylline oxidase. Biosensors and Bioelectronics, 2004, 20, 176-183.	10.1	24
92	Direct Electron Transfer Between Ligninolytic Redox Enzymes and Electrodes. Electroanalysis, 2004, 16, 1074-1092.	2.9	131
93	Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochemistry Communications, 2004, 6, 219-224.	4.7	56
94	Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode. Electrochemistry Communications, 2004, 6, 934-939.	4.7	126
95	Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzyme and Microbial Technology, 2004, 35, 238-241.	3.2	94
96	Recombinant horseradish peroxidase - and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochemistry, 2004, 63, 277-280.	4.6	19
97	Biosensor Based on Cellobiose Dehydrogenase for Detection of Catecholamines. Analytical Chemistry, 2004, 76, 4690-4696.	6.5	65
98	Spectroelectrochemistry of cytochrome P450cam. Biochemical and Biophysical Research Communications, 2004, 314, 810-816.	2.1	31
99	Investigation of the Effect of Different Glassy Carbon Materials on the Performance of Prussian Blue Based Sensors for Hydrogen Peroxide. Electroanalysis, 2003, 15, 175-182.	2.9	26
100	Screen-Printed Carbon Electrodes Modified with Cellobiose Dehydrogenase: Amplification Factor for Catechol vs. Reversibility of Ferricyanide. Electroanalysis, 2003, 15, 492-498.	2.9	16
101	Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. Biosensors and Bioelectronics, 2003, 18, 193-200.	10.1	115
102	Direct Electron Transfer of Heme- and Molybdopterin Cofactor-Containing Chicken Liver Sulfite Oxidase on Alkanethiol-Modified Gold Electrodes. Analytical Chemistry, 2003, 75, 4841-4850.	6.5	121
103	Stabilisation of tyrosinase by reversed micelles for bioelectrocatalysis in dry organic media. Biochimica Et Biophysica Acta - General Subjects, 2003, 1620, 119-124.	2.4	9
104	Direct Electron Transfer Between Graphite Electrodes and Ligninolytic Peroxidases from Phanerochaete chrysosporium. Electroanalysis, 2002, 14, 1411-1418.	2.9	18
105	Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosensors and Bioelectronics, 2002, 17, 953-963.	10.1	7 5
106	In-field monitoring of cleaning efficiency in waste water treatment plants using two phenol-sensitive biosensors. Analytica Chimica Acta, 2002, 456, 3-17.	5.4	36
107	Effect of interfering substances on current response of recombinant peroxidase and glucose oxidase-recombinant peroxidase modified graphite electrodes. Analyst, The, 2001, 126, 1929-1935.	3.5	11
108	Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. Biosensors and Bioelectronics, 2001, 16, 147-157.	10.1	164

#	Article	IF	Citations
109	Direct electron transfer of cellobiose dehydrogenase from various biological origins at gold and graphite electrodes. Journal of Electroanalytical Chemistry, 2001, 496, 76-81.	3.8	69
110	Direct electron transfer in the system gold electrode–recombinant horseradish peroxidases. Journal of Electroanalytical Chemistry, 2001, 509, 19-26.	3.8	56
111	Spectroelectrochemical study of cellobiose dehydrogenase and diaphorase in a thiol-modified gold capillary in the absence of mediators. Bioelectrochemistry, 2001, 53, 243-249.	4.6	45
112	Sensor for Hydrogen Peroxide Based on Prussian Blue Modified Electrode. Improvement of the Operational Stability Analytical Sciences, 2000, 16, 795-798.	1.6	78
113	A Reagentless Amperometric Carbon Paste Based Sensor for NADH. Electroanalysis, 2000, 12, 194-198.	2.9	26
114	Electrocatalytic Oxidation of Coenzyme NADH at Carbon Paste Electrodes, Modified with Zirconium Phosphate and Some Redox Mediators. Journal of Colloid and Interface Science, 2000, 224, 325-332.	9.4	23
115	Direct electron transfer between the heme of cellobiose dehydrogenase and thiol modified gold electrodes. Journal of Electroanalytical Chemistry, 2000, 494, 105-113.	3.8	80
116	Bioelectrochemical characterisation of cellobiose dehydrogenase modified graphite electrodes: ionic strength and pH dependences. Journal of Electroanalytical Chemistry, 2000, 482, 1-10.	3.8	54
117	Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosensors and Bioelectronics, 2000, 15, 491-497.	10.1	130
118	Cellobiose Dehydrogenase and Peroxidase Biosensors for Determination of Phenolic Compounds. ACS Symposium Series, 2000, , 113-124.	0.5	11
119	Direct and Mediated Electron Transfer Catalyzed by Anionic Tobacco Peroxidase: Effect of Calcium lons. Applied Biochemistry and Biotechnology, 2000, 88, 321-334.	2.9	20
120	Direct heterogeneous electron transfer of recombinant horseradish peroxidases on gold. Faraday Discussions, 2000, 116, 281-289.	3.2	63
121	Electrooxidation Mechanism of Biogenic Amines at Amine Oxidase Modified Graphite Electrode. Analytical Chemistry, 2000, 72, 5988-5993.	6.5	13
122	Electrochemical oxidation of mono- and disaccharides at fresh as well as oxidized copper electrodes in alkaline media. Journal of Electroanalytical Chemistry, 1999, 464, 252-258.	3.8	125
123	Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism. Electrochemistry Communications, 1999, 1, 171-175.	4.7	70
124	Redox hydrogel based bienzyme electrode for l-glutamate monitoring. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19, 93-105.	2.8	53
125	Development of a cellobiose dehydrogenase modified electrode for amperometric detection of diphenols. Analyst, The, 1999, 124, 527-532.	3.5	62
126	Diffusionless electron transfer of microperoxidase-11 on gold electrodes. Journal of Electroanalytical Chemistry, 1999, 469, 123-131.	3.8	62

#	Article	IF	CITATIONS
127	Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. Biochemical Journal, 1999, 340, 579.	3.7	38
128	Oligosaccharide Dehydrogenase-Catalyzed Assay for the Determination of Polysaccharides. Analytical Biochemistry, 1998, 265, 151-156.	2.4	6
129	Comparison of rotating disk and wall-jet electrode systems for studying the kinetics of direct and mediated electron transfer for horseradish peroxidase on a graphite electrode. Journal of Electroanalytical Chemistry, 1998, 458, 113-120.	3.8	58
130	Electron Transfer between Surface-Confined Cytochrome c and an N-Acetylcysteine-Modified Gold Electrode. Langmuir, 1998, 14, 7298-7305.	3.5	48
131	Bioelectrochemical Monitoring of Phenols and Aromatic Amines in Flow Injection Using Novel Plant Peroxidases. Analytical Chemistry, 1998, 70, 2596-2600.	6.5	124
132	LCâ^'Biosensor System for the Determination of the Neurotoxin \hat{l}^2 -N-Oxalyl-l- \hat{l}_{\pm} , \hat{l}^2 -diaminopropionic Acid. Analytical Chemistry, 1997, 69, 3471-3475.	6.5	22
133	Oligosaccharide Dehydrogenase-Modified Graphite Electrodes for the Amperometric Determination of Sugars in a Flow Injection System. Analytical Chemistry, 1997, 69, 4039-4044.	6.5	23
134	Effects of pretreatments and modifiers on electrochemical properties of carbon paste electrodes. Electroanalysis, 1997, 9, 357-365.	2.9	34
135	Amperometric detection of phenols using peroxidase-modified graphite electrodes. Analytica Chimica Acta, 1997, 347, 51-62.	5.4	78
136	Simultaneous amperometric determination of some mono-, di-, and oligosaccharides in flow injection and liquid chromatography using two working enzyme electrodes with different selectivity. Analytica Chimica Acta, 1997, 349, 179-188.	5.4	36
137	Rate-Limiting Steps of Tyrosinase-Modified Electrodes for the Detection of Catechol. Analytical Chemistry, 1996, 68, 1605-1611.	6.5	83
138	Characterization of tyrosinase-teflon/graphite composite electrodes for the determination of catechol in environmental analysis. Electroanalysis, 1996, 8, 885-890.	2.9	18
139	Effect of HY-zeolites on the performance of tyrosinase-modified carbon paste electrodes. Electroanalysis, 1996, 8, 1121-1126.	2.9	39
140	Peroxidase-modified electrodes: Fundamentals and application. Analytica Chimica Acta, 1996, 330, 123-138.	5.4	504
141	Comparison of carbon paste electrodes modified with native and polyethylene glycol derivatized horseradish peroxidases for the amperometric monitoring of H2O2. Sensors and Actuators B: Chemical, 1996, 37, 97-102.	7.8	4
142	Development of enzyme-based amperometric sensors for the determination of phenolic compounds. TrAC - Trends in Analytical Chemistry, 1995, 14, 319-328.	11.4	89