Carey N Lumeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325881/publications.pdf

Version: 2024-02-01

94 papers 14,827 citations

70961 41 h-index 48187 88 g-index

95 all docs 95
docs citations

95 times ranked 20887 citing authors

#	Article	IF	Citations
1	Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight, 2022, 7, .	2.3	24
2	Myeloid interleukin-4 receptor α is essential in postmyocardial infarction healing by regulating inflammation and fibrotic remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H323-H337.	1.5	10
3	Pathways to Severe COVIDâ€19 for People with Obesity. Obesity, 2021, 29, 645-653.	1.5	36
4	Obesity results in adipose tissue T cell exhaustion. JCI Insight, 2021, 6, .	2.3	55
5	A Bayesian Mixture Model for Predicting the COVID-19 Related Mortality in the United States. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1484-1492.	0.6	5
6	The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity. Scientific Reports, 2021, 11, 17394.	1.6	30
7	Highâ€fat and highâ€sodium diet induces metabolic dysfunction in the absence of obesity. Obesity, 2021, 29, 1868-1881.	1.5	4
8	Maternal High-Fat Diet During Pre-Conception and Gestation Predisposes Adult Female Offspring to Metabolic Dysfunction in Mice. Frontiers in Endocrinology, 2021, 12, 780300.	1.5	6
9	Wnt/ \hat{l}^2 -catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Molecular Metabolism, 2020, 42, 101078.	3.0	53
10	Regulation of adipose tissue inflammation and systemic metabolism in murine obesity by polymer implants loaded with lentiviral vectors encoding human interleukinâ€4. Biotechnology and Bioengineering, 2020, 117, 3891-3901.	1.7	6
11	Acute Aerobic Exercise Remodels the Adipose Tissue Progenitor Cell Phenotype in Obese Adults. Frontiers in Physiology, 2020, 11, 903.	1.3	10
12	Elucidating nanoscale mechanical properties of diabetic human adipose tissue using atomic force microscopy. Scientific Reports, 2020, 10, 20423.	1.6	11
13	Viscoelastic characterization of diabetic and non-diabetic human adipose tissue. Biorheology, 2020, 57, 15-26.	1.2	11
14	Enhanced Myeloid Leukocytes in Obese Children and Adolescents at Risk for Metabolic Impairment. Frontiers in Endocrinology, 2020, 11, 327.	1.5	8
15	Adipose tissue dendritic cell signals are required to maintain T cell homeostasis and obesity-induced expansion. Molecular and Cellular Endocrinology, 2020, 505, 110740.	1.6	19
16	Weight Regain in Formerly Obese Mice Hastens Development of Hepatic Steatosis Due to Impaired Adipose Tissue Function. Obesity, 2020, 28, 1086-1097.	1.5	10
17	Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes. Molecular Metabolism, 2020, 39, 100983.	3.0	38
18	Depot-specific adipocyte-extracellular matrix metabolic crosstalk in murine obesity. Adipocyte, 2020, 9, 189-196.	1.3	21

#	Article	IF	CITATIONS
19	Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Molecular Cell, 2019, 75, 644-660.e5.	4.5	488
20	A Human 3D Extracellular Matrix-Adipocyte Culture Model for Studying Matrix-Cell Metabolic Crosstalk. Journal of Visualized Experiments, 2019, , .	0.2	2
21	Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes. Scientific Reports, 2019, 9, 19748.	1.6	30
22	3266 Understanding epicardial adipose biology by imaging, transcriptomic, and lipidomic profiling. Journal of Clinical and Translational Science, 2019, 3, 157-158.	0.3	0
23	GM-CSF Administration Improves Defects in Innate Immunity and Sepsis Survival in Obese Diabetic Mice. Journal of Immunology, 2019, 202, 931-942.	0.4	22
24	Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages. Journal of Leukocyte Biology, 2018, 103, 615-628.	1.5	43
25	TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. Journal of Biological Chemistry, 2018, 293, 8775-8786.	1.6	61
26	The IKKâ€related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO Journal, 2018, 37, 19-38.	3.5	70
27	Properties and functions of adipose tissue macrophages in obesity. Immunology, 2018, 155, 407-417.	2.0	421
28	The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Molecular Metabolism, 2018, 14, 60-70.	3.0	42
29	Water–fat magnetic resonance imaging quantifies relative proportions of brown and white adipose tissues: ex-vivo experiments. Journal of Medical Imaging, 2018, 5, 1.	0.8	3
30	Macrophage Proliferation Sustains Adipose Tissue Inflammation in Formerly Obese Mice. Diabetes, 2017, 66, 392-406.	0.3	111
31	Differentiation and Metabolic Interrogation of Human Adipocytes. Methods in Molecular Biology, 2017, 1566, 61-76.	0.4	10
32	Adipocyte hypertrophy-hyperplasia balance contributes to weight loss after bariatric surgery. Adipocyte, 2017, 6, 134-140.	1.3	21
33	Diabetes-Specific Regulation of Adipocyte Metabolism by the Adipose Tissue Extracellular Matrix. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1032-1043.	1.8	44
34	Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Molecular Metabolism, 2017, 6, 317-326.	3.0	29
35	The initiation of metabolic inflammation in childhood obesity. Journal of Clinical Investigation, 2017, 127, 65-73.	3.9	125
36	2370. Journal of Clinical and Translational Science, 2017, 1, 63-63.	0.3	0

3

#	Article	IF	CITATIONS
37	Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget, 2017, 8, 5761-5773.	0.8	14
38	Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochemistry and Biophysics Reports, 2016, 7, 144-149.	0.7	47
39	Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance. Journal of Immunology, 2016, 197, 3650-3661.	0.4	116
40	Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity, 2016, 24, 597-605.	1.5	250
41	Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E238-E247.	1.8	46
42	CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity. Journal of Leukocyte Biology, 2016, 99, 1107-1119.	1.5	33
43	Lung Macrophage Diversity and Asthma. Annals of the American Thoracic Society, 2016, 13 Suppl 1, S31-4.	1.5	10
44	Differences in Hematopoietic Stem Cells Contribute to Sexually Dimorphic Inflammatory Responses to High Fat Diet-induced Obesity. Journal of Biological Chemistry, 2015, 290, 13250-13262.	1.6	92
45	A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nature Communications, 2015, 6, 6047.	5.8	75
46	Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury. Brain Research, 2015, 1624, 103-112.	1.1	27
47	Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocyte, 2015, 4, 264-272.	1.3	35
48	Otopetrin 1 Protects Mice From Obesity-Associated Metabolic Dysfunction Through Attenuating Adipose Tissue Inflammation. Diabetes, 2014, 63, 1340-1352.	0.3	35
49	Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity, 2014, 22, 2109-2114.	1.5	49
50	Imaging White Adipose Tissue with Confocal Microscopy. Methods in Enzymology, 2014, 537, 17-30.	0.4	44
51	An MHC II-Dependent Activation Loop between Adipose Tissue Macrophages and CD4+ T Cells Controls Obesity-Induced Inflammation. Cell Reports, 2014, 9, 605-617.	2.9	167
52	Fractalkine signaling in regulation of insulin secretion. Islets, 2014, 6, e27861.	0.9	6
53	Flow Cytometry Analyses of Adipose Tissue Macrophages. Methods in Enzymology, 2014, 537, 297-314.	0.4	106
54	The relationship between body fat mass percentiles and inflammation in children. Obesity, 2014, 22, 1332-1336.	1.5	49

#	Article	IF	Citations
55	Heme Oxygenase-1 Drives Metaflammation and Insulin Resistance in Mouse and Man. Cell, 2014, 158, 25-40.	13.5	243
56	Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metabolism, 2014, 20, 368-375.	7.2	415
57	Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Molecular Metabolism, 2014, 3, 664-675.	3.0	179
58	Adipose Tissue Macrophages Function As Antigen-Presenting Cells and Regulate Adipose Tissue CD4+ T Cells in Mice. Diabetes, 2013, 62, 2762-2772.	0.3	185
59	Obesity Heats Up Adipose Tissue Lymphocytes. Gastroenterology, 2013, 145, 282-285.	0.6	8
60	Targeted Deletion of Growth Hormone (GH) Receptor in Macrophage Reveals Novel Osteopontin-mediated Effects of GH on Glucose Homeostasis and Insulin Sensitivity in Diet-induced Obesity. Journal of Biological Chemistry, 2013, 288, 15725-15735.	1.6	53
61	Innate immune activation in obesity. Molecular Aspects of Medicine, 2013, 34, 12-29.	2.7	127
62	Phosphorylation of the adaptor protein SH2B1 \hat{l}^2 regulates its ability to enhance growth hormone (GH)-dependent macrophage motility. Journal of Cell Science, 2013, 126, 1733-43.	1.2	25
63	Obesityâ€Related Hormones in Lowâ€Income Preschoolâ€Age Children: Implications for School Readiness. Mind, Brain, and Education, 2013, 7, 246-255.	0.9	12
64	Thrombospondin 1 Mediates High-Fat Diet-Induced Muscle Fibrosis and Insulin Resistance in Male Mice. Endocrinology, 2013, 154, 4548-4559.	1.4	64
65	Neuropeptide Y Is Produced by Adipose Tissue Macrophages and Regulates Obesity-Induced Inflammation. PLoS ONE, 2013, 8, e57929.	1.1	81
66	Hexosamine Biosynthesis Is a Possible Mechanism Underlying Hypoxia's Effects on Lipid Metabolism in Human Adipocytes. PLoS ONE, 2013, 8, e71165.	1.1	19
67	Toll-like Receptor 4 Deficiency Promotes the Alternative Activation of Adipose Tissue Macrophages. Diabetes, 2012, 61, 2718-2727.	0.3	148
68	Smooth muscle protein 22 alpha-Cre is expressed in myeloid cells in mice. Biochemical and Biophysical Research Communications, 2012, 422, 639-642.	1.0	24
69	CX ₃ CR1 Deficiency Does Not Influence Trafficking of Adipose Tissue Macrophages in Mice With Dietâ€Induced Obesity. Obesity, 2012, 20, 1189-1199.	1.5	60
70	Daily and intermittent corticosteroids have similar impact on recurrent wheezing in young children. Journal of Pediatrics, 2012, 160, 881.	0.9	0
71	Inflammatory links between obesity and metabolic disease. Journal of Clinical Investigation, 2011, 121, 2111-2117.	3.9	1,845
72	Visceral Adipose Inflammation in Obesity Is Associated with Critical Alterations in Tregulatory Cell Numbers. PLoS ONE, 2011, 6, e16376.	1.1	256

#	Article	IF	Citations
73	Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 341-346.	1.3	229
74	Infant pulmonary function testing guides therapy in cystic fibrosis lung disease. Respiratory Medicine CME, 2011, 4, 17-19.	0.1	0
75	SirT1: A Guardian at the Gates of Adipose Tissue Inflammation. Diabetes, 2011, 60, 3100-3102.	0.3	17
76	Aging Is Associated with an Increase in T Cells and Inflammatory Macrophages in Visceral Adipose Tissue. Journal of Immunology, 2011, 187, 6208-6216.	0.4	235
77	Stressâ€induced Epigenetic Programming for Adipogenesis, Role of Neuropeptide Y and and Adipose Stem Cells. FASEB Journal, 2011, 25, 1062.9.	0.2	0
78	The Role of Pediatricians in the Coordinated National Effort to Address Childhood Obesity. Pediatrics, 2010, 126, 574-575.	1.0	10
79	Adipose Tissue Macrophages: A Piece of the PAI of Metabolic Syndrome. Science Translational Medicine, 2010, 2, 20ps7.	5.8	16
80	Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. Journal of Clinical Investigation, 2010, 120, 3350-3364.	3.9	317
81	Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Circulation, 2009, 119, 538-546.	1.6	608
82	MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. Journal of Experimental Medicine, 2009, 206, 3143-3156.	4.2	109
83	T-ing up inflammation in fat. Nature Medicine, 2009, 15, 846-847.	15.2	153
84	The Protein Kinase IKKÉ, Regulates Energy Balance in Obese Mice. Cell, 2009, 138, 961-975.	13.5	318
85	Phenotypic Switching of Adipose Tissue Macrophages With Obesity Is Generated by Spatiotemporal Differences in Macrophage Subtypes. Diabetes, 2008, 57, 3239-3246.	0.3	757
86	Increased Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced Obesity. Diabetes, 2007, 56, 16-23.	0.3	888
87	Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E166-E174.	1.8	296
88	Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation, 2007, 117, 175-184.	3.9	3,739
89	Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance. Nature Medicine, 2007, 13, 455-462.	15.2	110
90	Inhaled corticosteroids do not prevent the development of asthma. Journal of Pediatrics, 2007, 150, 114.	0.9	0

#	Article	IF	CITATIONS
91	Insulin htts on Autophagy. Autophagy, 2006, 2, 250-253.	4.3	9
92	Characterization of Dystrophin and Utrophin Diversity in the Mouse. Human Molecular Genetics, 1999, 8, 593-599.	1.4	30
93	Interactions between \hat{l}^22 -syntrophin and a family of microtubule-associated serine/threonine kinases. Nature Neuroscience, 1999, 2, 611-617.	7.1	139
94	Expression of the 71 kDa dystrophin isoform (Dp71) evaluated by gene targeting. Brain Research, 1999, 830, 174-178.	1.1	18