Suzette A Priola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7325769/publications.pdf

Version: 2024-02-01

172457 168389 4,049 57 29 53 citations h-index g-index papers 57 57 57 2365 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cell biology of prion strains in vivo and in vitro. Cell and Tissue Research, 2022, , .	2.9	5
2	Lack of the immune adaptor molecule SARM1 accelerates disease in prion infected mice and is associated with increased mitochondrial respiration and decreased expression of NRF2. PLoS ONE, 2022, 17, e0267720.	2.5	2
3	The Size and Stability of Infectious Prion Aggregates Fluctuate Dynamically during Cellular Uptake and Disaggregation. Biochemistry, 2021, 60, 398-411.	2.5	3
4	Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes. Acta Neuropathologica Communications, 2020, 8, 83.	5. 2	5
5	Altered distribution, aggregation, and protease resistance of cellular prion protein following intracranial inoculation. PLoS ONE, 2019, 14, e0219457.	2.5	1
6	Processing of high-titer prions for mass spectrometry inactivates prion infectivity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1174-1180.	2.3	4
7	Cell biology of prion infection. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 45-68.	1.8	14
8	Cellular prion protein is present in mitochondria of healthy mice. Scientific Reports, 2017, 7, 41556.	3.3	32
9	Cell Biology Approaches to Studying Prion Diseases. Methods in Molecular Biology, 2017, 1658, 83-94.	0.9	5
10	Prion strains depend on different endocytic routes for productive infection. Scientific Reports, 2017, 7, 6923.	3.3	29
11	Mitochondrial Respiration Is Impaired during Late-Stage Hamster Prion Infection. Journal of Virology, 2017, 91, .	3.4	26
12	PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. Journal of Virology, 2017, 91,	3 . 4	19
13	The Distribution of Prion Protein Allotypes Differs Between Sporadic and latrogenic Creutzfeldt-Jakob Disease Patients. PLoS Pathogens, 2016, 12, e1005416.	4.7	15
14	Relative Abundance of apoE and $\hat{A^2}1\hat{a}\in$ 42 Associated with Abnormal Prion Protein Differs between Creutzfeldt-Jakob Disease Subtypes. Journal of Proteome Research, 2016, 15, 4518-4531.	3.7	3
15	Proteomics applications in prion biology and structure. Expert Review of Proteomics, 2015, 12, 171-184.	3.0	8
16	Uptake and Degradation of Protease-Sensitive and -Resistant Forms of Abnormal Human Prion Protein Aggregates by Human Astrocytes. American Journal of Pathology, 2014, 184, 3299-3307.	3.8	28
17	Proteomics Analysis of Amyloid and Nonamyloid Prion Disease Phenotypes Reveals Both Common and Divergent Mechanisms of Neuropathogenesis. Journal of Proteome Research, 2014, 13, 4620-4634.	3.7	20
18	A Specific Population of Abnormal Prion Protein Aggregates Is Preferentially Taken Up by Cells and Disaggregated in a Strain-Dependent Manner. Journal of Virology, 2013, 87, 11552-11561.	3.4	12

#	Article	IF	CITATIONS
19	Lack of Prion Infectivity in Fixed Heart Tissue from Patients with Creutzfeldt-Jakob Disease or Amyloid Heart Disease. Journal of Virology, 2013, 87, 9501-9510.	3.4	6
20	Recombinant Prion Protein Refolded with Lipid and RNA Has the Biochemical Hallmarks of a Prion but Lacks In Vivo Infectivity. PLoS ONE, 2013, 8, e71081.	2.5	40
21	Species Barriers in Prion Disease. , 2013, , 139-154.		3
22	Comparative profiling of highly enriched 22L and Chandler mouse scrapie prion protein preparations. Proteomics, 2010, 10, 2858-2869.	2.2	31
23	Susceptibilities of Nonhuman Primates to Chronic Wasting Disease. Emerging Infectious Diseases, 2009, 15, 1366-1376.	4.3	133
24	Cells Expressing Anchorless Prion Protein Are Resistant to Scrapie Infection. Journal of Virology, 2009, 83, 4469-4475.	3.4	57
25	Prion protein misfolding and disease. Current Opinion in Structural Biology, 2009, 19, 14-22.	5 . 7	73
26	The role of the prion protein membrane anchor in prion infection. Prion, 2009, 3, 134-138.	1.8	33
27	Acute cellular uptake of abnormal prion protein is cell type and scrapie-strain independent. Virology, 2008, 379, 284-293.	2.4	44
28	Nonpsychoactive Cannabidiol Prevents Prion Accumulation and Protects Neurons against Prion Toxicity. Journal of Neuroscience, 2007, 27, 9537-9544.	3.6	56
29	Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity. Antimicrobial Agents and Chemotherapy, 2007, 51, 3887-3894.	3.2	34
30	Amyloid Formation via Supramolecular Peptide Assemblies. Biochemistry, 2007, 46, 7079-7087.	2.5	33
31	Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nature Methods, 2007, 4, 645-650.	19.0	305
32	DNA Aptamers That Bind to PrP ^C and Not Prp ^{Sc} Show Sequence and Structure Specificity. Experimental Biology and Medicine, 2006, 231, 204-214.	2.4	89
33	Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Science, 2006, 15, 609-619.	7.6	61
34	Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies. Molecular Biotechnology, 2006, 33, 71-88.	2.4	14
35	Anchorless Prion Protein Results in Infectious Amyloid Disease Without Clinical Scrapie. Science, 2005, 308, 1435-1439.	12.6	585
36	Molecular Aspects of Disease Pathogenesis in the Transmissible Spongiform Encephalopathies. , 2004, 268, 517-540.		13

#	Article	IF	Citations
37	Susceptibility of Common Fibroblast Cell Lines to Transmissible Spongiform Encephalopathy Agents. Journal of Infectious Diseases, 2004, 189, 431-439.	4.0	115
38	Flexible N-terminal Region of Prion Protein Influences Conformation of Protease-resistant Prion Protein Isoforms Associated with Cross-species Scrapie Infection in Vivo and in Vitro. Journal of Biological Chemistry, 2004, 279, 13689-13695.	3.4	58
39	Acute Formation of Protease-resistant Prion Protein Does Not Always Lead to Persistent Scrapie Infection in Vitro. Journal of Biological Chemistry, 2004, 279, 29218-29225.	3.4	56
40	Identification of possible animal origins of prion disease in human beings. Lancet, The, 2004, 363, 2013-2014.	13.7	10
41	BIOMEDICINE: A View from the TopPrion Diseases from 10,000 Feet. Science, 2003, 300, 917-919.	12.6	31
42	Prophylactic and Therapeutic Effects of Phthalocyanine Tetrasulfonate in Scrapieâ€Infected Mice. Journal of Infectious Diseases, 2003, 188, 699-705.	4.0	36
43	Multiple Amino Acid Residues within the Rabbit Prion Protein Inhibit Formation of Its Abnormal Isoform. Journal of Virology, 2003, 77, 2003-2009.	3.4	117
44	Molecular Basis of Scrapie Strain Glycoform Variation. Journal of Biological Chemistry, 2002, 277, 36775-36781.	3.4	68
45	Therapeutic Potential of Prion Protein Peptides in the Transmissible Spongiform Encephalopathies. Laboratory Medicine, 2002, 33, 369-373.	1.2	0
46	Deletion of \hat{l}^2 -Strand and \hat{l}_{\pm} -Helix Secondary Structure in Normal Prion Protein Inhibits Formation of Its Protease-Resistant Isoform. Journal of Virology, 2001, 75, 10024-10032.	3.4	36
47	N-terminal Truncation of Prion Protein Affects Both Formation and Conformation of Abnormal Protease-resistant Prion Protein Generatedin Vitro. Journal of Biological Chemistry, 2001, 276, 35265-35271.	3.4	80
48	Efficient Conversion of Normal Prion Protein (PrP) by Abnormal Hamster PrP Is Determined by Homology at Amino Acid Residue 155. Journal of Virology, 2001, 75, 4673-4680.	3.4	66
49	Methods for Studying Prion Protein (PrP) Metabolism and the Formation of Protease-Resistant PrP in Cell Culture and Cell-Free Systems: An Update. Molecular Biotechnology, 1999, 13, 45-56.	2.4	27
50	Novel therapeutic uses for porphyrins and phthalocyanines in the transmissible spongiform encephalopathies. Current Opinion in Microbiology, 1999, 2, 563-566.	5.1	17
51	Abnormal Properties of Prion Protein with Insertional Mutations in Different Cell Types. Journal of Biological Chemistry, 1998, 273, 11980-11985.	3.4	81
52	Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature, 1997, 388, 285-288.	27.8	259
53	Methods for Studying Prion Protein (PrP) Metabolism and the Formation of Protease-Resistant PrP in Cell Culture and Cell-Free Systems., 1996,, 285-300.		3
54	A 60-kDa Prion Protein (PrP) with Properties of Both the Normal and Scrapie-associated Forms of PrP. Journal of Biological Chemistry, 1995, 270, 3299-3305.	3.4	82

SUZETTE A PRIOLA

#	Article	IF	CITATIONS
55	Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron, 1995, 15, 1183-1191.	8.1	149
56	Inhibition of scrapie-associated PrP accumulation. Molecular Neurobiology, 1994, 8, 113-120.	4.0	58
57	Cell-free formation of protease-resistant prion protein. Nature, 1994, 370, 471-474.	27.8	859