Takashi Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/732570/publications.pdf Version: 2024-02-01

TAKASHI OKAMOTO

#	Article	IF	CITATIONS
1	In Vitro Fertilization System Using Wheat Gametes by Electric Fusion. Methods in Molecular Biology, 2022, 2484, 259-273.	0.9	0
2	Isolation of gametes and zygotes from Setaria viridis. Journal of Plant Research, 2022, 135, 627-633.	2.4	1
3	Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. Plant Journal, 2021, 108, 1097-1115.	5.7	18
4	Development and regeneration of wheat–rice hybrid zygotes produced by <i>in vitro</i> fertilization system. New Phytologist, 2021, 232, 2369-2383.	7.3	3
5	Effect of Paternal Genome Excess on the Developmental and Gene Expression Profiles of Polyspermic Zygotes in Rice. Plants, 2021, 10, 255.	3.5	4
6	Dynamics of mitochondrial distribution during development and asymmetric division of rice zygotes. Plant Reproduction, 2021, , 1.	2.2	1
7	Polyspermy in angiosperms: Its contribution to polyploid formation and speciation. Molecular Reproduction and Development, 2020, 87, 374-379.	2.0	14
8	CRISPR/Cas9â€Based Genome Editing Using Rice Zygotes. Current Protocols in Plant Biology, 2020, 5, e20111.	2.8	11
9	In Vitro Production of Zygotes by Electrofusion of Rice Gametes. Methods in Molecular Biology, 2020, 2122, 257-267.	0.9	2
10	Gene Expression and Genome Editing Systems by Direct Delivery of Macromolecules Into Rice Egg Cells and Zygotes. Bio-protocol, 2020, 10, e3681.	0.4	2
11	Sperm Entry into the Egg Cell Induces the Progression of Karyogamy in Rice Zygotes. Plant and Cell Physiology, 2019, 60, 1656-1665.	3.1	12
12	DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proceedings of the United States of America, 2019, 116, 9652-9657.	7.1	56
13	An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nature Plants, 2019, 5, 363-368.	9.3	135
14	Expression of Genes from Paternal Alleles in Rice Zygotes and Involvement of <i>OsASGR-BBML1</i> in Initiation of Zygotic Development. Plant and Cell Physiology, 2019, 60, 725-737.	3.1	32
15	Establishment of an In Vitro Fertilization System in Wheat (Triticum aestivumL.). Plant and Cell Physiology, 2019, 60, 835-843.	3.1	17
16	Cell cycle in egg cell and its progression during zygotic development in rice. Plant Reproduction, 2018, 31, 107-116.	2.2	18
17	An imbalanced parental genome ratio affects the development of rice zygotes. Journal of Experimental Botany, 2018, 69, 2609-2619.	4.8	18
18	Development of polyspermic zygote and possible contribution of polyspermy to polyploid formation in angiosperms. Journal of Plant Research, 2017, 130, 485-490.	2.4	7

Таказні Окамото

#	Article	IF	CITATIONS
19	Nuclear migration during karyogamy in rice zygotes is mediated by continuous convergence of actin meshwork toward the egg nucleus. Journal of Plant Research, 2017, 130, 339-348.	2.4	20
20	Analysis of Proteins Enriched in Rice Gamete. Methods in Molecular Biology, 2017, 1669, 251-263.	0.9	3
21	Development of gene expression system in egg cells and zygotes isolated from rice and maize. Plant Direct, 2017, 1, e00010.	1.9	17
22	Isolation of gametes from <i>Brachypodium distachyon</i> . Plant Biotechnology, 2016, 33, 39-43.	1.0	3
23	Development of Polyspermic Rice Zygotes. Plant Physiology, 2016, 171, 206-214.	4.8	27
24	DNA demethylation is initiated in the central cells of <i>Arabidopsis</i> and rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15138-15143.	7.1	157
25	Formation of triploid plants via possible polyspermy. Plant Signaling and Behavior, 2016, 11, e1218107.	2.4	4
26	Electro-fusion of Gametes and Subsequent Culture of Zygotes in Rice. Bio-protocol, 2016, 6, .	0.4	3
27	Karyogamy in rice zygotes: Actin filament-dependent migration of sperm nucleus, chromatin dynamics, and <i>de novo</i> gene expression. Plant Signaling and Behavior, 2015, 10, e989021.	2.4	8
28	Gene and Protein Expression Profiles in Rice Gametes and Zygotes: A Cue for Understanding the Mechanisms of Gametic and Early Zygotic Development in Angiosperms. , 2014, , 369-382.		1
29	Dynamics of Male and Female Chromatin during Karyogamy in Rice Zygotes Â. Plant Physiology, 2014, 165, 1533-1543.	4.8	61
30	Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization. Journal of Experimental Botany, 2013, 64, 1927-1940.	4.8	52
31	Identification of Proteins Enriched in Rice Egg or Sperm Cells by Single-Cell Proteomics. PLoS ONE, 2013, 8, e69578.	2.5	39
32	In Vitro Fertilization with Rice Gametes: Production of Zygotes and Zygote and Embryo Culture. Methods in Molecular Biology, 2011, 710, 17-27.	0.9	17
33	Distinct Gene Expression Profiles in Egg and Synergid Cells of Rice as Revealed by Cell Type-Specific Microarrays Â. Plant Physiology, 2011, 155, 881-891.	4.8	58
34	Gamete fusion site on the egg cell and autonomous establishment of cell polarity in the zygote. Plant Signaling and Behavior, 2010, 5, 1464-1467.	2.4	5
35	Studies of mitochondrial morphology and DNA amount in the rice egg cell. Current Genetics, 2010, 56, 33-41.	1.7	23
36	Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sexual Plant Reproduction, 2010, 23, 211-217.	2.2	38

Таказні Окамото

#	Article	IF	CITATIONS
37	Positional relationship between the gamete fusion site and the first division plane in the rice zygote. Journal of Experimental Botany, 2010, 61, 3101-3105.	4.8	27
38	In Vitro Fertilization With Isolated Higher Plant Gametes. Methods in Molecular Biology, 2008, 427, 51-69.	0.9	10
39	Identification of the major protein components of rice egg cells. Journal of Plant Research, 2007, 120, 575-579.	2.4	19
40	Establishment of an in vitro fertilization system in rice (Oryza sativa L.). Planta, 2007, 226, 581-589.	3.2	77
41	Isolation of gametes and central cells from Oryza sativa L Sexual Plant Reproduction, 2006, 19, 37-45.	2.2	56
42	Identification of Genes that are Up- or Down-regulated in the Apical or Basal Cell of Maize Two-celled Embryos and Monitoring their Expression During Zygote Development by a Cell Manipulation- and PCR-based Approach. Plant and Cell Physiology, 2005, 46, 332-338.	3.1	62
43	Identification of Major Proteins in Maize Egg Cells. Plant and Cell Physiology, 2004, 45, 1406-1412.	3.1	65