Victor S Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324595/publications.pdf

Version: 2024-02-01

183 7,560 36 80
papers citations h-index g-index

227 227 4931 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. Journal of Organic Chemistry, 1981, 46, 3936-3938.	3.2	1,684
2	Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity?. Journal of the American Chemical Society, 1981, 103, 6237-6240.	13.7	788
3	Synthesis of saccharides and related polyhydroxylated natural products. 1. Simple alditols. Journal of Organic Chemistry, 1982, 47, 1373-1378.	3.2	240
4	Efficient oxidation of phenyl groups to carboxylic acids with ruthenium tetraoxide. A simple synthesis of (R)gammacaprolactone, the pheromone of Trogoderma granarium. Journal of Organic Chemistry, 1990, 55, 1928-1932.	3.2	201
5	Synthesis of saccharides and related polyhydroxylated natural products. 2. Simple deoxyalditols. Journal of Organic Chemistry, 1982, 47, 1378-1380.	3.2	189
6	General method for determining absolute configuration of acyclic allylic alcohols. Journal of the American Chemical Society, 1982, 104, 3775-3776.	13.7	145
7	Iron(III)-Promoted Aza-Prins-Cyclization:  Direct Synthesis of Six-Membered Azacycles. Organic Letters, 2006, 8, 3837-3840.	4.6	127
8	Recent Uses of Iron (III) Chloride in Organic Synthesis. Current Organic Chemistry, 2006, 10, 457-476.	1.6	123
9	A New Catalytic Prins Cyclization Leading to Oxa- and Azacycles. Organic Letters, 2009, 11, 357-360.	4.6	120
10	Iron(III)-Catalyzed Prins-Type Cyclization Using Homopropargylic Alcohol:  A Method for the Synthesis of 2-Alkyl-4-halo-5,6-dihydro-2H-pyrans. Organic Letters, 2003, 5, 1979-1982.	4.6	107
11	Fe(III) Halides as Effective Catalysts in Carbonâ-'Carbon Bond Formation: Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers. Journal of Organic Chemistry, 2005, 70, 57-62.	3.2	93
12	Synthesis of saccharides and related polyhydroxylated natural products. 3. Efficient conversion of 2,3-erythro-aldoses to 2,3-threo-aldoses. Journal of the American Chemical Society, 1982, 104, 3515-3516.	13.7	92
13	Enantiospecific synthesis of $\hat{l}\pm$ -amino acid semialdehydes: a key step for the synthesis of unnatural unsaturated and saturated $\hat{l}\pm$ -amino acids. Tetrahedron: Asymmetry, 1998, 9, 3381-3394.	1.8	88
14	A General Approach to the Asymmetric Synthesis of Unsaturated Lipidic \hat{l}_{\pm} -Amino Acids. The First Synthesis of \hat{l}_{\pm} -Aminoarachidonic Acid. Journal of Organic Chemistry, 1998, 63, 3741-3744.	3.2	81
15	Asymmetric Addition to Ketones: Enantioselective Formation of Tertiary Alcohols. Current Organic Chemistry, 2006, 10, 1849-1889.	1.6	80
16	Prins-Type Synthesis and SAR Study of Cytotoxic Alkyl Chloro Dihydropyrans. ChemMedChem, 2006, 1, 323-329.	3.2	69
17	Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes. Marine Drugs, 2014, 12, 5503-5526.	4.6	68
18	Stereocontrolled Synthesis of Cyclic Ethers by Intramolecular Hetero-Michael Addition. 5. Synthesis of All Diastereoisomers of 2,3,5,6-Tetrasubstituted Tetrahydropyrans. Journal of Organic Chemistry, 1997, 62, 4570-4583.	3.2	62

#	Article	IF	CITATIONS
19	Quantification of a CH–π Interaction Responsible for Chiral Discrimination and Evaluation of Its Contribution to Enantioselectivity. Angewandte Chemie - International Edition, 2009, 48, 7803-7808.	13.8	62
20	Mild and stereocontrolled synthesis of iodo- and bromohydrins by halogen-tetrakis(isopropoxy)titanium opening of epoxy alcohols. Journal of Organic Chemistry, 1990, 55, 3429-3431.	3.2	61
21	The Silylalkyne-Prins Cyclization:  Stereoselective Synthesis of Tetra- and Pentasubstituted Halodihydropyrans. Organic Letters, 2006, 8, 1633-1636.	4.6	59
22	Non-terpenoid C-15 metabolites from the red seaweed Laurencia pinnatifida. Tetrahedron, 1982, 38, 1009-1014.	1.9	58
23	β-Hydroxy-γ-lactones as Chiral Building Blocks for the Enantioselective Synthesis of Marine Natural Productsâ€. Journal of Organic Chemistry, 2001, 66, 1420-1428.	3.2	58
24	From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts. PLoS ONE, 2015, 10, e0123652.	2.5	54
25	Stereoselective Synthesis of Eight-Membered Cyclic Ethers by Tandem Nicholas Reaction/Ring-Closing Metathesis:  A Short Synthesis of (+)-cis-Lauthisan. Organic Letters, 2006, 8, 871-873.	4.6	53
26	Oxidation with air by ascorbate-driven quinone redox cycling. Chemical Communications, 2015, 51, 7027-7030.	4.1	50
27	Radical C–H arylations of (hetero)arenes catalysed by gallic acid. Chemical Communications, 2016, 52, 9036-9039.	4.1	45
28	Stereocontrolled Synthesis of Cyclic Ethers by Intramolecular Hetero-Michael Addition. 6. A Computational Study of the Annelation to 2,3-Disubstituted Tetrahydropyrans. Journal of Organic Chemistry, 1997, 62, 4584-4590.	3.2	44
29	Novel antiproliferative analogs of the Taq DNA polymerase inhibitor catalpol. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1332-1335.	2.2	44
30	Broadening the Synthetic Scope of the Iron(III)â€Catalyzed Azaâ€Prins Cyclization. European Journal of Organic Chemistry, 2010, 2010, 2304-2313.	2.4	44
31	Efficient Stereoselective Synthesis of the Enantiomers of Highly Substituted Paraconic Acids. Journal of Organic Chemistry, 1996, 61, 6450-6453.	3.2	43
32	A stereoselective synthesis of medium-sized cyclic ethers by the intramolecular cyclization of linear hydroxyalkyl-propargylic alcohols assisted by Co2(CO)8. Tetrahedron Letters, 1995, 36, 3549-3552.	1.4	42
33	Biomimetic-Type Synthesis of Halogenated Tetrahydrofurans fromLaurencia. Total Synthesis oftrans-(+)-Deacetylkumausyne. Journal of Organic Chemistry, 1997, 62, 1570-1571.	3.2	42
34	A New Selective Cleavage of N, N-Dicarbamoyl-Protected Amines Using Lithium Bromide. Journal of Organic Chemistry, 2003, 68, 743-746.	3.2	40
35	Stereoselective Synthesis of Cyclic Ethers by Intramolecular Trapping of Dicobalt Hexacarbonyl-Stabilized Propargylic Cationsâ€. Journal of Organic Chemistry, 2003, 68, 3216-3224.	3.2	39
36	A Convenient and Chemoselective One-Pot Oxidation/Wittig Reaction for the C2-Homologation of Carbohydrate-Derived Glycols. Journal of Organic Chemistry, 2005, 70, 10099-10101.	3.2	38

3

#	Article	IF	Citations
37	Insect Growth Regulatory Effects of Linear Diterpenoids and Derivatives fromBaccharis thymifolia. Journal of Natural Products, 2008, 71, 190-194.	3.0	38
38	An Approach to <i>Lauroxanes</i> by Iterative Use of Co ₂ (CO) ₆ -Acetylenic Complexes. A Formal Synthesis of (+)-Laurencin. Journal of Organic Chemistry, 2010, 75, 6660-6672.	3.2	37
39	Epoxideâ€Opening Cascades Triggered by a Nicholas Reaction: Total Synthesis of Teurilene. Angewandte Chemie - International Edition, 2013, 52, 3659-3662.	13.8	36
40	New antimicrobial diterpenes from the sponge spongia officinalis. Tetrahedron, 1984, 40, 4109-4113.	1.9	35
41	General Stereoselective Synthesis of Chemically Differentiated α-Diamino Acids:  Synthesis of 2,6-Diaminopimelic and 2,7-Diaminosuberic Acids. Journal of Organic Chemistry, 2001, 66, 4934-4938.	3.2	35
42	The tert-butyl dimethyl silyl group as an enhancer of drug cytotoxicity against human tumor cells. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3536-3539.	2.2	35
43	A Robust and General Protocol for the Lewisâ€Baseâ€Catalysed Reaction of Alcohols and Alkyl Propiolates. European Journal of Organic Chemistry, 2014, 2014, 198-205.	2.4	35
44	Stereocontrolled synthesis of cyclic ethers by intramolecular hetero-Michael addition. 3. Enantiomeric synthesis of highly functionalized and fused tetrahydropyrans. Tetrahedron Letters, 1993, 34, 5467-5470.	1.4	34
45	Montmorillonite K-10 as a mild acid for the Nicholas reaction. Tetrahedron Letters, 2005, 46, 2829-2832.	1.4	34
46	Molecular Simplification in Bioactive Molecules:Â Formal Synthesis of (+)-Muconin. Journal of Organic Chemistry, 2006, 71, 2339-2345.	3.2	34
47	Factors Controlling the Alkyne Prins Cyclization: The Stability of Dihydropyranyl Cations. Chemistry - A European Journal, 2008, 14, 6260-6268.	3.3	34
48	Iron(III) Catalyzed Direct Synthesis of <i>cis</i> -2,7-Disubstituted Oxepanes. The Shortest Total Synthesis of (+)-Isolaurepan. Organic Letters, 2012, 14, 5904-5907.	4.6	33
49	Enantiomeric synthesis of endo-substituted tetrahydropyrans. Tetrahedron Letters, 1990, 31, 763-766.	1.4	32
50	Iron(III)-Catalyzed Consecutive Aza-Copeâ^'Mannich Cyclization: Synthesis oftrans-3,5-Dialkyl Pyrrolidines and 3,5-Dialkyl-2,5-dihydro-1H-pyrroles. Organic Letters, 2010, 12, 5334-5337.	4.6	32
51	Oxasqualenoids from <i>Laurencia viridis</i> : Combined Spectroscopic–Computational Analysis and Antifouling Potential. Journal of Natural Products, 2015, 78, 712-721.	3.0	32
52	Stereoselective Synthesis of Highly Substituted .gammaLactones and Butenolides by Intramolecular Michael Addition of Enantiomerically Enriched .gamma[(Phenylthio)acyl]oxy .alpha.,.betaUnsaturated Esters. Journal of Organic Chemistry, 1994, 59, 4461-4472.	3.2	31
53	Easy and general method to synthesize chiral 2-hydroxyacid benzoates. Tetrahedron Letters, 1988, 29, 2701-2702.	1.4	30
54	Stereocontrolled synthesis of cyclic ethers by intramolecular hetero-Michael addition. 4. Enantiomeric synthesis of substituted and fused oxepanes. Tetrahedron Letters, 1993, 34, 5471-5474.	1.4	30

#	Article	IF	CITATIONS
55	Stereoselective Intramolecular Nicholas Reaction Using Epoxides as Nucleophiles. Organic Letters, 2004, 6, 565-568.	4.6	30
56	Antiproliferative activity in HL60 cells by tetrasubstituted pyrroles: a structure–activity relationship study. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2487-2490.	2.2	30
57	Strategies for the Synthesis of Cyclic Ethers of Marine Natural Products. Synlett, 2013, 25, 12-32.	1.8	30
58	General method to transform chiral 2,3-epoxyalcohols into erythro or threo 1,2-epoxyalcohols with total stereochemical control. Tetrahedron Letters, 1986, 27, 4987-4990.	1.4	29
59	Antiproliferative activity of 2-alkyl-4-halopiperidines and 2-alkyl-4-halo-1,2,5,6-tetrahydropyridines in solid tumor cell lines. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2681-2684.	2.2	29
60	Enantiomeric syntheses of $6(R)$, $7(R)$ and $6(S)$, $7(S)$ trans- and cis-laurediol. Tetrahedron Letters, 1986, 27, 4991-4994.	1.4	28
61	Enantiocontrolled Synthesis of Trialkyl-Substituted Stereogenic Carbons. A General Route tocis-3,5-Dialkyl Î ³ -Lactones. Organic Letters, 2000, 2, 335-337.	4.6	28
62	Simple and efficient oxidation of sulfides to sulfones using catalytic ruthenium tetroxide. Tetrahedron, 1992, 48, 3571-3576.	1.9	27
63	A general approach to the enantiomeric synthesis of lipidic \hat{l} ±-amino acids, peptides and vicinal amino alcohols. Tetrahedron: Asymmetry, 1996, 7, 857-866.	1.8	27
64	A new approach to functionalized cyclobutanes: Stereoselective synthesis of the enantiomers of grandisol and fraganol. Tetrahedron: Asymmetry, 1995, 6, 1151-1164.	1.8	26
65	Direct Stereoselective Synthesis of Enantiomerically Pure <i>anti</i> -β-Amino Alcohols. Journal of Organic Chemistry, 2014, 79, 6775-6782.	3.2	26
66	On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study. BMC Microbiology, 2014, 14, 102.	3.3	26
67	Puertitols: Novel Sesquiterpenes from Laurencia obtusa. Structure Elucidation and Absolute Configuration and Conformation Based on Circular Dichroism. Journal of Natural Products, 1988, 51, 1257-1260.	3.0	25
68	Synthesis, in vitro cytotoxicity and in vivo anti-inflammatory activity of long chain 3-amino-1,2-diols. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 821-826.	2.2	25
69	Enantiocontrolled synthesis of C-19 tetrahydrofurans isolated from the marine alga Notheia anomala. Tetrahedron Letters, 2000, 41, 4127-4130.	1.4	25
70	Stereocontrolled Synthesis of Unsaturated Halohydrins from Unsaturated Epoxides. Journal of Organic Chemistry, 2001, 66, 7231-7233.	3.2	25
71	First Practical Protection of α-Amino Acids asN,N-Benzyloxycarbamoyl Derivatives. Journal of Organic Chemistry, 2004, 69, 3590-3592.	3.2	25
72	Biomimetic approach to the synthesis of rhodolaureol and rhodolauradiol. Tetrahedron Letters, 1982, 23, 2395-2398.	1.4	24

#	Article	IF	Citations
73	A short synthesis of trans-(+)-laurediol. Tetrahedron Letters, 2000, 41, 2503-2505.	1.4	24
74	Intramolecular propargylic reduction in \hat{I}^3 -benzyl protected Co2(CO)6- $\hat{I}\pm$, \hat{I}^3 -acetylenic diols under Nicholas reaction conditions. Tetrahedron Letters, 2000, 41, 743-746.	1.4	24
7 5	Stereoselective synthesis of syn-2,7-disubstituted-4,5-oxepenes. Tetrahedron, 2002, 58, 1913-1919.	1.9	24
76	Prins Cyclization Catalyzed by a Fe ^{III} /Trimethylsilyl Halide System: The Oxocarbenium Ion Pathway versus the [2+2] Cycloaddition. Chemistry - A European Journal, 2015, 21, 15211-15217.	3.3	24
77	Enantiomeric synthesis of polysubstituted Furanes by stereoselective intramolecular bromoetherification. Tetrahedron Letters, 1988, 29, 3149-3152.	1.4	23
78	SYNTHESES OF AVENACIOLIDE AND RELATED bis LACTONES. A REVIEW. Organic Preparations and Procedures International, 1998, 30, 291-324.	1.3	23
79	CO2(CO)8-Assisted synthesis of propargylic unsymmetrical ethers by reaction of alcohols with propargylic alcohols. Tetrahedron Letters, 2000, 41, 9993-9996.	1.4	22
80	Double Cationic Propargylation:  From Linear to Polycyclic Ethers. Organic Letters, 2001, 3, 3289-3291.	4.6	22
81	Î ³ -Lactone-Tethered Ring-Closing Metathesis. A Route to Enantiomerically Enriched Î ³ -Lactones α,Î ² -Fused to Medium-Sized Rings. Organic Letters, 2004, 6, 4787-4789.	4.6	22
82	In situ generation of 2,3-allenolates in the coupling of secondary homopropargylic alcohols and aldehydes. Tetrahedron Letters, 2006, 47, 283-286.	1.4	22
83	\hat{l}^2 -Hydroxy- \hat{l}^3 -lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings. Enantioselective formal synthesis of (\hat{a}^{**})-isolaurepinnacin and (+)-rogioloxepane A. Chemical Communications, 2014, 50, 3685-3688.	4.1	22
84	Stereocontrolled synthesis of chiral nonracemic halotetrahydropyrans. Tetrahedron Letters, 1992, 33, 2399-2402.	1.4	21
85	β′â€Hydroxyâ€Î±,βâ€unsaturated ketones: A new pharmacophore for the design of anticancer drugs. Part 2 ChemMedChem, 2008, 3, 1740-1747.	3.2	21
86	Synthesis and cation complexation properties of new macrolides. Tetrahedron, 2005, 61, 8177-8191.	1.9	20
87	Synthesis of î±,î±â€²â€Disubstituted Linear Ethers by an Intermolecular Nicholas Reaction – Application to the Synthesis of (+)â€∢i>cis⟨i∘/(–)â€∢i>trans⟨i∘à€Łauthisan and (+)â€∢i>cis⟨i∘/(+)â€∢i>trans⟨i∘â€Obtusan. Eu Journal of Organic Chemistry, 2009, 2009, 554-563.	ırøpean	20
88	Enhancement of antiproliferative activity by molecular simplification of catalpol. Bioorganic and Medicinal Chemistry, 2010, 18, 2515-2523.	3.0	20
89	Derivatives of grindelic acid: From a non-active natural diterpene toÂsynthetic antitumor derivatives. European Journal of Medicinal Chemistry, 2013, 67, 28-38.	5 . 5	20
90	Synthesis of Seven Membered Oxacycles: Recent Developments and New Approaches. European Journal of Organic Chemistry, 2020, 2020, 6704-6717.	2.4	20

#	Article	IF	Citations
91	Use of asymmetric propargyl dicobalt hexacarbonyl complexes in organic synthesis: Access to enantiomerically pure α-hydroxy acid derivatives. Tetrahedron Letters, 1998, 39, 9773-9776.	1.4	19
92	Enantiodivergent Synthesis of (+)―and (â^')â€Pyrrolidineâ€197B: Synthesis of <i>trans</i> ê2,5â€Disubstitut Pyrrolidines by Intramolecular Hydroamination. Chemistry - A European Journal, 2016, 22, 15529-15535.	eg <u>.</u> 3	19
93	Iron(III)â€Catalyzed Halogenations by Substitution of Sulfonate Esters. Advanced Synthesis and Catalysis, 2011, 353, 963-972.	4.3	18
94	A Novel Approach for the Evaluation of Positive Cooperative Guest Binding: Kinetic Consequences of Structural Tightening. Chemistry - A European Journal, 2013, 19, 7042-7048.	3.3	18
95	Synthesis and identification of unprecedented selective inhibitors of CK1 $\hat{l}\mu$. European Journal of Medicinal Chemistry, 2015, 96, 308-317.	5.5	18
96	Rhodolaureol and rhodolauradiol, two new halogenated tricyclic sesquiterpenes from a marine alga. Journal of the Chemical Society Chemical Communications, 1985, , 260-261.	2.0	17
97	An approach to the stereocontrolled synthesis of polysubstituted chiral butenolides and \hat{I}^3 -lactones. Tetrahedron Letters, 1991, 32, 2165-2168.	1.4	17
98	A New Stereoselective Synthesis of (â^')-Isoavenaciolide and (â^')-Avenaciolide. Journal of Organic Chemistry, 1996, 61, 8448-8452.	3.2	17
99	Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2 <i>H</i> S _N 2′–Prins Cyclization. Organic Letters, 2017, 19, 4834-4837.	4.6	17
100	Mildâ∈Baseâ∈Promoted Arylation of (Hetero)Arenes with Anilines. Chemistry - an Asian Journal, 2018, 13, 325-333.	3.3	17
101	Enantioselective total synthesis of 6(R), 7(R)-3-cis-9-cis-12-cis, 6-acetoxy-7-chloropentadeca-3,9,12-trien-1-yne and its 3-trans-isomer. Tetrahedron Letters, 1988, 29, 681-684.	1.4	16
102	The cis-2-alkyl-3-oxy-tetrahydropyran unit as a building block for new ionophores with C2-symmetry. Tetrahedron Letters, 2004, 45, 5215-5219.	1.4	16
103	Synthesis and antiproliferative activity of (2R,3R)-disubstituted tetrahydropyrans. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6135-6138.	2.2	16
104	A practical, catalytic and selective deprotection of a Boc group in N,N′-diprotected amines using iron(<scp>iii</scp>)-catalysis. RSC Advances, 2015, 5, 6647-6651.	3.6	16
105	DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. European Journal of Pharmaceutical Sciences, 2017, 105, 159-168.	4.0	16
106	Oxa/thiazole-tetrahydropyran triazole-linked hybrids with selective antiproliferative activity against human tumour cells. New Journal of Chemistry, 2018, 42, 13784-13789.	2.8	16
107	[1,3]-Transfer of Chirality during the Nicholas Reaction in \hat{I}^3 -Benzyloxy Propargylic Alcohols. Chemistry - A European Journal, 2006, 12, 2593-2606.	3.3	15
108	Antiproliferative activity of 4-chloro-5,6-dihydro-2H-pyrans. Part 2: Enhancement of drug cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3087-3090.	2.2	15

#	Article	IF	CITATIONS
109	Intramolecular Nicholas Reaction: Stereoselective Synthesis of 5-Alkynylproline Derivatives. Organic Letters, 2008, 10, 2349-2352.	4.6	15
110	Correlation between Conformational Equilibria of Free Host and Guest Binding Affinity in Non-preorganized Receptors. Journal of Organic Chemistry, 2013, 78, 7785-7795.	3.2	15
111	Sustainable oxidations with air mediated by gallic acid: potential applicability in the reutilization of grape pomace. Green Chemistry, 2016, 18, 2647-2650.	9.0	15
112	An access to homopropargylic ketones from propargylic alcohols. Tetrahedron Letters, 1999, 40, 2815-2816.	1.4	14
113	β′-Hydroxy-α,β-unsaturated ketones: A new pharmacophore for the design of anticancer drugs. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2266-2269.	2.2	14
114	A new iridoid, verbascoside and derivatives with inhibitory activity against Taq DNA polymerase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 914-918.	2.2	14
115	One-pot synthesis and SAR study of cis-2,6-dialkyl-4-chloro-tetrahydropyrans. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3135-3138.	2.2	13
116	Crystal structures of self-assembled nanotubes from flexible macrocycles by weak interactions. CrystEngComm, 2010, 12, 3676.	2.6	13
117	A new approach to the synthesis of chiral vinyl carbinols from 2,3-epoxy alcohols. Tetrahedron: Asymmetry, 1992, 3, 573-580.	1.8	12
118	Enantioselective Synthesis of Alkyl-Branched Alkanes. Synthesis of the Stereoisomers of 7,11-Dimethylheptadecane and 7-Methylheptadecane, Components of the Pheromone of Lambdina Species. Journal of Organic Chemistry, 2000, 65, 7896-7901.	3.2	12
119	Enhancement of Drug Cytotoxicity by Silicon Containing Groups. Letters in Drug Design and Discovery, 2006, 3, 29-34.	0.7	12
120	Oxazole/Thiazole and Triazole Hybrids Based on α-Amino Acids. Synthesis, 2014, 46, 2451-2462.	2.3	12
121	Iron(III)-Catalyzed Prins Cyclization towards the Synthesis of trans-Fused Bicyclic Tetrahydropyrans. Synthesis, 2015, 47, 1791-1798.	2.3	12
122	Stereoselective Synthesis of Highly Substituted Tetrahydropyrans through an Evans Aldol–Prins Strategy. Journal of Organic Chemistry, 2018, 83, 9039-9066.	3.2	12
123	Stereochemically controlled synthesis of unsaturated 2,5-dialkyl furanes. Tetrahedron Letters, 1988, 29, 1979-1982.	1.4	11
124	Stereoselective Synthesis of Highly Substituted .gammaLactones by Diastereoselective Alkylation of .alpha(Benzenesulfonyl) Derivatives with Unusual Facial Selectivity. Journal of Organic Chemistry, 1994, 59, 8081-8091.	3.2	11
125	Stereocontrolled synthesis of 1-acetylen-2,3-di-o-benzyl-tetrahydrofurans, 1,4-anhydro-arabinitol, and $\hat{l}\pm,\hat{l}^2$ -dihydroxy- \hat{l}^3 -alkyl-butyrolactones. Chirality, 2003, 15, 148-155.	2.6	11
126	A Practical Method for Selective Cleavage of a <i>tert</i> àêButoxycarbamoyl <i>N</i> âêProtective Group from <i>N</i> , <i>N</i> åêDiprotected αâêAmino Acid Derivatives Using Montmorillonite Kâ€10. European Journal of Organic Chemistry, 2007, 2007, 5050-05058.	2.4	11

#	Article	IF	CITATIONS
127	Synthesis and antiproliferative activity of (2R,3R)-disubstituted tetrahydropyrans. Part 2: Effect of side chain homologation. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 780-783.	2.2	11
128	Iron(II) promoted direct synthesis of dibenzo[b,e]oxepin-11(6H)-one derivatives with biological activity. A short synthesis of doxepin. Tetrahedron, 2017, 73, 2913-2922.	1.9	11
129	The Nicholas Reaction: A Powerful Tool for the Stereoselective Synthesis of Bioactive Compounds. Synlett, 2007, 2007, 0343-0359.	1.8	10
130	Iron-Catalyzed Prins–Peterson Reaction for the Direct Synthesis of Δ ⁴ -2,7-Disubstituted Oxepenes. Journal of Organic Chemistry, 2018, 83, 12632-12647.	3.2	10
131	Synthesis of New Benzocyclotrimer Analogues: New Receptors for Tetramethylammonium Ion Recognition. Organic Letters, 2015, 17, 2912-2915.	4.6	9
132	Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids, 2015, 47, 1527-1532.	2.7	9
133	The Evans Aldol–Prins cyclization: a general and stereoselective method for the synthesis of 2,3,4,5,6-pentasubstituted tetrahydropyrans. Chemical Communications, 2016, 52, 3380-3383.	4.1	9
134	Preparation of Sesquiterpene Lactone Derivatives: Cytotoxic Activity and Selectivity of Action. Molecules, 2019, 24, 1113.	3.8	9
135	Laurencia sesquiterpene biogenetic-type interconversions. Tetrahedron Letters, 1980, 21, 1151-1154.	1.4	8
136	A Short and Efficient Enantiomeric Synthesis of Antitumor Fused Tetrahydrofurans. European Journal of Organic Chemistry, 2006, 2006, 1910-1916.	2.4	8
137	Samarium(II) promoted stereoselective synthesis of antiproliferative cis-β-alkoxy-γ-alkyl-γ-lactones. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 18-21.	2.2	8
138	\hat{l}^3 -Lactones \hat{l}^4 , \hat{l}^2 - and \hat{l}^2 , \hat{l}^3 -fused to carbocycles as novel antiproliferative drugs. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5171-5173.	2.2	8
139	An example of a chiral non-racemic carbanion as versatile synthon in the asymmetric synthesis of polysubstituted \hat{l}^3 -lactones. Tetrahedron Letters, 1992, 33, 3039-3042.	1.4	7
140	\hat{I}^3 -Lactones as templates in ring-closing metathesis: Enantioselective synthesis of medium sized carbocycles fused to butyrolactones. Journal of Organometallic Chemistry, 2006, 691, 5326-5335.	1.8	7
141	Fluorescent \hat{I}^2 -Blockers as Tools to Study Presynaptic Mechanisms of Neurosecretion. Pharmaceuticals, 2011, 4, 713-725.	3.8	7
142	STRUCTURE OF GÜIMAREDIOL, A NEW REARRANGED SESQUITERPENOID FROM THE RED ALGALAUBENCIA SP Chemistry Letters, 1984, 13, 1865-1866.	1.3	6
143	Acid-Mediated Highly Regioselective Oxidation of Substituted Furans: A Simple and Direct Entry to Substituted Butenolides. Synlett, 2005, 2005, 1575-1578.	1.8	6
144	Isosteric Substitution of 4 <i>H</i> -1,2,4-Triazole by 1 <i>H</i> -1,2,3-Triazole in Isophthalic Derivative Enabled Hydrogel Formation for Controlled Drug Delivery. Molecular Pharmaceutics, 2018, 15, 2963-2972.	4.6	6

#	Article	IF	CITATIONS
145	Deoxybartemidiolide, a clerodane-type diterpene from Baccharis artemisioides. Phytochemistry, 1989, 28, 1537-1538.	2.9	5
146	Oxygen-Containing 10-, 15-, and 20-Membered Macrocyclic Cobalt Complexes from Co2(CO)6-Bispropargylic Alcohol. MolBank, 2008, 2008, M562.	0.5	5
147	Chemoenzymatic Total Synthesis and Structural Revision of Ampelomins B, D, E, and <i>epi</i> -Ampelomin B. Journal of Organic Chemistry, 2019, 84, 15997-16002.	3.2	5
148	Synthesis and Anti-Breast Cancer Activity of Tetrasubstituted Pyrrole Derivatives. Letters in Drug Design and Discovery, 2005, 2, 529-532.	0.7	4
149	Studies on tautomeric stability and equilibrium of 5(4)-substituted-1,2,3 triazoles. I. Electronegativity and resonance effects of substituent. Computational and Theoretical Chemistry, 2013, 1026, 31-37.	2.5	4
150	5-(1 <i>H</i> -1,2,3-Triazol-5-yl)isophthalic Acid: A Versatile Ligand for the Synthesis of New Supramolecular Metallogels. ACS Omega, 2019, 4, 2111-2117.	3. 5	4
151	Enantiodivergent Cyclization by Inversion of the Reactivity in Ambiphilic Molecules. Angewandte Chemie - International Edition, 2020, 59, 17077-17083.	13.8	4
152	Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes. Organic Letters, 2021, 23, 6105-6109.	4.6	4
153	Unexpected halogen exchange with halogenated solvents in the iron(III) promoted oxa-alkyne and aza-alkyne Prins cyclizations. Arkivoc, 2007, 2007, 331-343.	0.5	4
154	Mass spectrometry studies of iridoid aglycone derivatives. Rapid Communications in Mass Spectrometry, 2011, 25, 2099-2105.	1.5	3
155	Mass spectrometry studies of <i>Lycopodium</i> alkaloid sauroine. Rapid Communications in Mass Spectrometry, 2012, 26, 2827-2831.	1.5	3
156	Molecular docking studies of the interaction between propargylic enol ethers and human DNA topoisomerase IIα. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5382-5384.	2.2	3
157	Chemistry and Biological Activity of Coumarins at Molecular Level. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	3
158	Intramolecular Nicholas Reaction Enables the Stereoselective Synthesis of Strained Cyclooctynes. Molecules, 2021, 26, 1629.	3.8	3
159	Mass spectrometry studies of lycodineâ€type <i>Lycopodium</i> alkaloids: sauroxine and <i>N</i> â€demethylsauroxine. Rapid Communications in Mass Spectrometry, 2014, 28, 2690-2694.	1.5	2
160	Synthetic efforts on the road to marine natural products bearing 4- $\langle i \rangle O \langle i \rangle$ -2,3,4,6-tetrasubstituted THPs: an update. RSC Advances, 2021, 11, 5832-5858.	3.6	2
161	Shortest Enantioselective Total Syntheses of (+)-Isolaurepinnacin and (+)-Neoisoprelaurefucin. Organic Letters, 0, , .	4.6	2
162	Synthesis of Bis (1-Methyl-2-octynyl) Ether. MolBank, 2009, 2009, M612.	0.5	1

#	Article	IF	Citations
163	(E)-2-((4R,5R)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)but-2-ene-1,4-diol. MolBank, 2010, 2010, M676.	0.5	1
164	Mass spectral studies of diamide compounds obtained by the Ugi reaction. Rapid Communications in Mass Spectrometry, 2013, 27, 2033-2038.	1.5	1
165	Direct Synthesis of Polybenzylated Glutamic Acid Monoesters: Disambiguation of N,N-Dibenzylglutamic Acid \hat{l}_{\pm} - and \hat{l}_{\pm} -Benzyl Esters. Synlett, 2014, 25, 2166-2170.	1.8	1
166	Tsutomu Katsuki (1946–2014). Angewandte Chemie - International Edition, 2015, 54, 4708-4708.	13.8	1
167	One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters. Beilstein Journal of Organic Chemistry, 2016, 12, 957-962.	2.2	1
168	The 9H-Fluoren Vinyl Ether Derivative SAM461 Inhibits Bacterial Luciferase Activity and Protects Artemia franciscana From Luminescent Vibriosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 368.	3.9	1
169	Synthesis of Heterocycles With Iron Salts as Sustainable Metal Catalysts. , 2018, , 193-229.		1
170	Modular total syntheses of thymifodioic/incanic acids. Arabian Journal of Chemistry, 2019, 12, 3764-3775.	4.9	1
171	Enantiodivergent Cyclization by Inversion of the Reactivity in Ambiphilic Molecules. Angewandte Chemie, 2020, 132, 17225-17231.	2.0	1
172	Antiproliferative Evaluation of N-sulfonyl-2-alkyl-six Membered Azacycles. A QSAR Study. Medicinal Chemistry, 2014, 10, 571-579.	1.5	1
173	Asymmetric synthesis of the (2S,4S,6S)-2,4,6-trimethylnonyl subunit of siphonarienes. Israel Journal of Chemistry, 2001, 41, 297-302.	2.3	0
174	Stereoselective Synthesis of Cyclic Ethers by Intramolecular Trapping of Dicobalt Hexacarbonyl-Stabilized Propargylic Cations ChemInform, 2003, 34, no.	0.0	0
175	Stereoselective Synthesis of Cyclic Ethers by Intramolecular Trapping of Dicobalt Hexacarbonyl-Stabilized Propargylic Cations ChemInform, 2003, 34, no.	0.0	0
176	Iron(III)-Catalyzed Prins-type Cyclization Using Homopropargylic Alcohol: A Method for the Synthesis of 2-Alkyl-4-halo-5,6-dihydro-2H-pyrans ChemInform, 2003, 34, no.	0.0	0
177	Stereoselective Intramolecular Nicholas Reaction Using Epoxides as Nucleophiles ChemInform, 2004, 35, no.	0.0	0
178	First Practical Protection of α-Amino Acids as N,N-Benzyloxycarbamoyl Derivatives ChemInform, 2004, 35, no.	0.0	0
179	?-Lactone-Tethered Ring-Closing Metathesis. A Route to Enantiomerically Enriched ?-Lactones ?,?-Fused to Medium-Sized Rings ChemInform, 2005, 36, no.	0.0	0
180	Fe(III) Halides as Effective Catalysts in Carbonâ€"Carbon Bond Formation: Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers ChemInform, 2005, 36, no.	0.0	0

#	ARTICLE	IF	CITATIONS
181	Montmorillonite K-10 as a Mild Acid for the Nicholas Reaction ChemInform, 2005, 36, no.	0.0	0
182	Asymmetric Synthesis of the (2S,4S,6S)-2,4,6-Trimethylnonyl Subunit of Siphonarienes. Israel Journal of Chemistry, 2001, 41, 297-302.	2.3	0
183	Synthesis of hybrids compounds by Click Chemistry and their bioactivities. , 0, , .		0