Keith R Paton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324548/publications.pdf Version: 2024-02-01

Κειτή Ρ. Ράτον

#	Article	IF	CITATIONS
1	International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Materials, 2022, 9, 035010.	4.4	7
2	Rapid monitoring of graphene exfoliation using NMR proton relaxation. Nanoscale, 2021, 13, 14518-14524.	5.6	7
3	Using nuclear magnetic resonance proton relaxation to probe the surface chemistry of carbon 2D materials. Nanoscale, 2021, 13, 6389-6393.	5.6	8
4	Gas Cluster Ion Beam Cleaning of CVD-Grown Graphene for Use in Electronic Device Fabrication. ACS Applied Nano Materials, 2021, 4, 5187-5197.	5.0	5
5	Gas physisorption measurements as a quality control tool for the properties of graphene/graphite powders. Carbon, 2020, 167, 585-595.	10.3	16
6	Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 13481-13493.	8.0	27
7	On the extent of fracture toughness transfer from 1D/2D nanomodified epoxy matrices to glass fibre composites. Journal of Materials Science, 2020, 55, 4717-4733.	3.7	24
8	Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices. Composites Part B: Engineering, 2019, 167, 497-506.	12.0	51
9	Terahertz time-domain spectroscopy as a novel metrology tool for liquid-phase exfoliated few-layer graphene. Nanotechnology, 2019, 30, 025709.	2.6	10
10	Biological recognition of graphene nanoflakes. Nature Communications, 2018, 9, 1577.	12.8	75
11	Interplay between oxidative stress and endoplasmic reticulum stress mediated- autophagy in unfunctionalised few-layer graphene-exposed macrophages. 2D Materials, 2018, 5, 045033.	4.4	15
12	Production of few-layer graphene by microfluidization. Materials Research Express, 2017, 4, 025604.	1.6	41
13	Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content. Nanocomposites, 2017, 3, 85-96.	4.2	74
14	Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon, 2017, 114, 367-376.	10.3	46
15	Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers. Materials, 2017, 10, 1179.	2.9	66
16	Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension. Macromolecular Rapid Communications, 2016, 37, 1790-1794.	3.9	6
17	Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption. Carbon, 2016, 107, 733-738.	10.3	35
18	Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale, 2016, 8, 4311-4323.	5.6	194

Keith R Paton

#	Article	IF	CITATIONS
19	Large-Scale Production of Size-Controlled MoS ₂ Nanosheets by Shear Exfoliation. Chemistry of Materials, 2015, 27, 1129-1139.	6.7	389
20	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13, 624-630.	27.5	1,958
21	Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 2014, 78, 243-249.	10.3	136
22	Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale, 2014, 6, 11810-11819.	5.6	241
23	Efficient microwave energy absorption by carbon nanotubes. Carbon, 2008, 46, 1935-1941.	10.3	112