Weicai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key to intimately coupling metal chalcogenides with a carbon nanonetwork for potassium-ion storage. Journal of Materials Chemistry A, 2022, 10, 8958-8965.	10.3	6
2	From Lychee Seeds to Hierarchical Fe ₃ O ₄ /Carbon Composite Anodes for Lithium-Ion Batteries: A High Additional Value Conversion-Based Self-Assembly Strategy. Energy & Fuels, 2022, 36, 5027-5035.	5.1	2
3	A versatile route to metal oxide nanoparticles impregnated in carbon matrix for electrochemical energy storage. Chemical Engineering Journal, 2021, 404, 126461.	12.7	11
4	Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery. Journal of Colloid and Interface Science, 2021, 582, 852-858.	9.4	24
5	Sodium alginate assisted preparation of oxygen-doped microporous carbons with enhanced electrochemical energy storage and hydrogen uptake. International Journal of Hydrogen Energy, 2021, 46, 896-905.	7.1	19
6	Propelling electrochemical kinetics of transition metal oxide for high-rate lithium-ion battery through in situ deoxidation. Journal of Colloid and Interface Science, 2021, 587, 590-596.	9.4	22
7	Architecture engineering of carbonaceous anodes for highâ€rate potassiumâ€ion batteries. , 2021, 3, 554-581.		39
8	General synthesis of ultrahigh-surface-area porous carbons with superior yield via preferential removal of sp2-hybridized atoms. Carbon, 2021, 182, 100-108.	10.3	12
9	Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites. Journal of Colloid and Interface Science, 2021, 599, 271-279.	9.4	3
10	A self-crosslinking procedure to construct yolk–shell Au@microporous carbon nanospheres for lithium–sulfur batteries. Chemical Communications, 2020, 56, 1215-1218.	4.1	13
11	Engineering of nanonetwork-structured carbon to enable high-performance potassium-ion storage. Journal of Colloid and Interface Science, 2020, 561, 195-202.	9.4	13
12	Active Nanointerfaceâ€Assisted Coâ€Assembly to Yolk–Shell Au@Ordered Mesoporous Carbon Nanospheres. Advanced Materials Interfaces, 2020, 7, 1901703.	3.7	3
13	Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 580, 638-644.	9.4	22
14	A general strategy for metal oxide nanoparticles embedded into heterogeneous carbon nanosheets as high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 25382-25389.	10.3	13
15	Direct carbonization of black liquor powders into 3D honeycomb-like porous carbons with a tunable disordered degree for sodium-ion batteries. New Journal of Chemistry, 2020, 44, 10697-10702.	2.8	3
16	Facile Synthesis of Core-Shell Structured SiO2@Carbon Composite Nanorods for High-Performance Lithium-Ion Batteries. Nanomaterials, 2020, 10, 513.	4.1	17
17	Improved ion-diffusion performance by engineering an ordered mesoporous shell in hollow carbon nanospheres. Chemical Communications, 2020, 56, 2467-2470.	4.1	14
18	A general strategy for metal compound encapsulated into network-structured carbon as fast-charging alkali-metal ion battery anode. Energy Storage Materials, 2020, 29, 300-309.	18.0	19

WEICAI ZHANG

#	Article	IF	CITATIONS
19	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	17.3	694
20	Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. Journal of Colloid and Interface Science, 2019, 546, 53-59.	9.4	31
21	Advanced nanonetwork-structured carbon materials for high-performance formaldehyde capture. Journal of Colloid and Interface Science, 2019, 537, 562-568.	9.4	20
22	Interface Engineering of Carbonâ€Based Nanocomposites for Advanced Electrochemical Energy Storage. Advanced Materials Interfaces, 2018, 5, 1800430.	3.7	95
23	Deciphering the dual function of silicon dioxide protective layer in regulating lithium Ion deposition. Materials Advances, 0, , .	5.4	0