List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor. IEEE Photonics Technology Letters, 2004, 16, 1149-1151.	2.5	290
2	Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Optics Letters, 2009, 34, 2613.	3.3	229
3	The role of the measurement configuration in inverse scattering from buried objects under the Born approximation. IEEE Transactions on Antennas and Propagation, 2005, 53, 1875-1887.	5.1	183
4	Response of fiber Bragg gratings to longitudinal ultrasonic waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 304-312.	3.0	114
5	Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing. IEEE Photonics Journal, 2012, 4, 48-56.	2.0	110
6	Microfluidic sensor based on integrated optical hollow waveguides. Optics Letters, 2004, 29, 1894.	3.3	97
7	Distributed Temperature Sensing in Polymer Optical Fiber by BOFDA. IEEE Photonics Technology Letters, 2014, 26, 387-390.	2.5	89
8	A Simple Technique for Reducing Pump Depletion in Long-Range Distributed Brillouin Fiber Sensors. IEEE Sensors Journal, 2009, 9, 633-634.	4.7	81
9	Roadmap for optofluidics. Journal of Optics (United Kingdom), 2017, 19, 093003.	2.2	78
10	Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Optics Express, 2016, 24, 29994.	3.4	72
11	A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results. Measurement Science and Technology, 2005, 16, 900-908.	2.6	66
12	Perfluorinated Plastic Optical Fiber Tapers for Evanescent Wave Sensing. Sensors, 2009, 9, 10423-10433.	3.8	63
13	Bridge Monitoring Using Brillouin Fiber-Optic Sensors. IEEE Sensors Journal, 2012, 12, 145-150.	4.7	61
14	ARROW optical waveguides based sensors. Sensors and Actuators B: Chemical, 2004, 100, 143-146.	7.8	58
15	Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors. Applied Optics, 2013, 52, 3770.	1.8	58
16	Silicon micromachined hollow optical waveguides for sensing applications. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 106-110.	2.9	56
17	Low distortion Brillouin slow light in optical fibers using AM modulation. Optics Express, 2006, 14, 5866.	3.4	52
18	Cytotoxicity Investigation on Cultured Human Blood Cells Treated with Single-Wall Carbon Nanotubes. Sensors, 2008, 8, 488-499.	3.8	48

#	Article	IF	CITATIONS
19	Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project. Sensors, 2010, 10, 10620-10639.	3.8	46
20	A hybrid silicon-PDMS optofluidic platform for sensing applications. Biomedical Optics Express, 2014, 5, 417.	2.9	45
21	Integrated silicon optofluidic ring resonator. Applied Physics Letters, 2010, 97, 131110.	3.3	42
22	Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis. IEEE Sensors Journal, 2006, 6, 1218-1226.	4.7	37
23	Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber. Optics Express, 2014, 22, 17480.	3.4	37
24	Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides. Applied Physics Letters, 2008, 93, .	3.3	36
25	Development and characterization of an integrated silicon micro flow cytometer. Analytical and Bioanalytical Chemistry, 2006, 386, 1267-1272.	3.7	34
26	Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe. Optics Express, 2011, 19, 23845.	3.4	34
27	Information content of the Born field scattered by an embedded slab: multifrequency, multiview, and multifrequency–multiview cases. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16, 2392.	1.5	32
28	Long term structural health monitoring by Brillouin fibre-optic sensing: a real case. Journal of Geophysics and Engineering, 2012, 9, S64-S69.	1.4	31
29	Optofluidic Approaches for Enhanced Microsensor Performances. Sensors, 2015, 15, 465-484.	3.8	31
30	Micro flow cytometer with self-aligned 3D hydrodynamic focusing. Biomedical Optics Express, 2015, 6, 54.	2.9	31
31	Identification of defects and strain error estimation for bending steel beams using time domain Brillouin distributed optical fiber sensors. Smart Materials and Structures, 2006, 15, 612-622.	3.5	30
32	Liquid Core ARROW Waveguides by Atomic Layer Deposition. IEEE Photonics Technology Letters, 2010, 22, 616-618.	2.5	30
33	Stimulated Brillouin scattering frequency-domain analysis in a single-mode optical fiber for distributed sensing. Optics Letters, 2004, 29, 1977.	3.3	29
34	Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing. Optics Express, 2007, 15, 10397.	3.4	29
35	Polymer based planar coupling of self-assembled bottle microresonators. Applied Physics Letters, 2014, 105, .	3.3	29
36	Accuracy Enhancement in Brillouin Distributed Fiber-Optic Temperature Sensors Using Signal Processing Techniques. IEEE Photonics Technology Letters, 2004, 16, 1143-1145.	2.5	27

#	Article	IF	CITATIONS
37	High-visibility optofluidic Mach–Zehnder interferometer. Optics Letters, 2010, 35, 1584.	3.3	27
38	Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors. Micromachines, 2016, 7, 47.	2.9	27
39	Plasma functionalization procedure for antibody immobilization for SU-8 based sensor. Biosensors and Bioelectronics, 2016, 86, 827-833.	10.1	27
40	Accurate high-resolution fiber-optic distributed strain measurements for structural health monitoring. Sensors and Actuators A: Physical, 2007, 134, 389-395.	4.1	26
41	High sensitivity UV fluorescence spectroscopy based on an optofluidic jet waveguide. Optics Express, 2013, 21, 24219.	3.4	26
42	Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors. Optical Engineering, 2002, 41, 2186.	1.0	25
43	Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors. Smart Materials and Structures, 2008, 17, 015006.	3.5	25
44	Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime. Optics Express, 2011, 19, 19233.	3.4	25
45	Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis. Lab on A Chip, 2017, 17, 2631-2639.	6.0	25
46	All frequency domain distributed fiber-optic brillouin sensing. IEEE Sensors Journal, 2003, 3, 36-43.	4.7	23
47	Dynamic loading of overhead lines by adaptive learning techniques and distributed temperature sensing. IET Generation, Transmission and Distribution, 2007, 1, 912.	2.5	23
48	Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer. Sensors and Actuators B: Chemical, 2017, 241, 534-540.	7.8	23
49	Bend-Induced Brillouin Frequency Shift Variation in a Single-Mode Fiber. IEEE Photonics Technology Letters, 2013, 25, 2362-2364.	2.5	22
50	Liquid-core/liquid-cladding integrated silicon ARROW waveguides. Optics Communications, 2008, 281, 2062-2066.	2.1	21
51	Refractive index sensing by Brillouin scattering in side-polished optical fibers. Optics Letters, 2018, 43, 2280.	3.3	21
52	Integrated tunable liquid optical fiber. Lab on A Chip, 2012, 12, 3670.	6.0	20
53	An Instrumented Flume to Investigate the Mechanics of Rainfall-Induced Landslides in Unsaturated Granular Soils. Geotechnical Testing Journal, 2009, 32, 101366.	1.0	20
54	Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements. Smart Materials and Structures, 2012, 21, 125022.	3.5	19

#	Article	IF	CITATIONS
55	Determination of thermal diffusivity of suspended porous silicon films by thermal lens technique. Applied Physics A: Materials Science and Processing, 2005, 81, 399-404.	2.3	18
56	An accurate high-resolution technique for distributed sensing based on frequency-domain Brillouin scattering. IEEE Photonics Technology Letters, 2006, 18, 280-282.	2.5	18
57	Optical Monitoring of Therapeutic Drugs with a Novel Fluorescence- Based POCT Device. Procedia Engineering, 2014, 87, 392-395.	1.2	18
58	Planar Silicon-Polydimethylsiloxane Optofluidic Ring Resonator Sensors. IEEE Photonics Technology Letters, 2016, 28, 155-158.	2.5	18
59	Optical fiber fuel level sensor for aeronautical applications. Sensors and Actuators A: Physical, 2017, 260, 1-9.	4.1	18
60	Slot and Layer-Slot Waveguide in the Visible Spectrum. Journal of Lightwave Technology, 2011, 29, 2979-2984.	4.6	17
61	Hybrid Silicon-PDMS Optofluidic ARROW Waveguide. IEEE Photonics Technology Letters, 2012, 24, 1307-1309.	2.5	17
62	Optofluidic jet waveguide enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2015, 207, 732-739.	7.8	17
63	Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements. Journal of Optics (United Kingdom), 2016, 18, 025606.	2.2	16
64	Optofluidic jet waveguide for laser-induced fluorescence spectroscopy. Optics Letters, 2012, 37, 5115.	3.3	15
65	Theoretical and Experimental Analysis of Brillouin Scattering in Single-Mode Optical Fiber Excited by an Intensity- and Phase-Modulated Pump. Journal of Lightwave Technology, 2010, 28, 193-200.	4.6	14
66	Flow through ring resonator sensing platform. RSC Advances, 2015, 5, 70156-70162.	3.6	14
67	Frequency-domain approach to distributed fiber-optic Brillouin sensing. Optics Letters, 2002, 27, 288.	3.3	13
68	Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor. Applied Optics, 2002, 41, 70.	2.1	13
69	Damage detection in bending beams through Brillouin distributed optic-fibre sensor. Bridge Structures, 2005, 1, 355-363.	0.4	13
70	Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides. Sensors and Actuators B: Chemical, 2007, 127, 231-236.	7.8	13
71	Pulsing the Probe Wave to Reduce Nonlocal Effects in Brillouin Optical Time-Domain Analysis (BOTDA) Sensors. IEEE Sensors Journal, 2011, 11, 1067-1068.	4.7	13
72	Water monitoring by optofluidic Raman spectroscopy for in situ applications. Talanta, 2016, 155, 145-152.	5.5	13

#	Article	IF	CITATIONS
73	Self-assembling and packaging of microbottle resonators for all-polymer lab-on-chip platform. Sensors and Actuators A: Physical, 2018, 280, 271-276.	4.1	13
74	Quasi-Distributed Refractive Index Sensing by Stimulated Brillouin Scattering in Tapered Optical Fibers. Journal of Lightwave Technology, 2022, 40, 2619-2624.	4.6	13
75	Reconstruction of doping profiles in semiconductor materials using optical tomography. Solid-State Electronics, 1999, 43, 761-769.	1.4	12
76	Planar antiresonant reflecting optical waveguides as integrated optical refractometer. IEEE Sensors Journal, 2003, 3, 652-657.	4.7	12
77	Integrated silicon optical sensors based on hollow core waveguide. , 2007, , .		12
78	High-Spatial Resolution DPP-BOTDA by Real-Time Balanced Detection. IEEE Photonics Technology Letters, 2014, 26, 1251-1254.	2.5	12
79	Structural Damage Identification in an Aluminum Composite Plate by Brillouin Sensing. IEEE Sensors Journal, 2015, 15, 659-660.	4.7	11
80	Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise. Journal of Optics (United Kingdom), 2016, 18, 025601.	2.2	11
81	Contactless characterization of the recombination process in silicon wafers: Separation between bulk and surface contribution. Solid-State Electronics, 1996, 39, 1165-1172.	1.4	10
82	Distributed fiber-optic frequency-domain Brillouin sensing. Sensors and Actuators A: Physical, 2005, 123-124, 337-342.	4.1	10
83	Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers. International Journal of Geophysics, 2011, 2011, 1-5.	1.1	10
84	Generalized Mach–Zehnder interferometers for sensing applications. Sensors and Actuators B: Chemical, 2004, 100, 72-74.	7.8	9
85	2-D MMI Devices Based on Integrated Hollow ARROW Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 194-201.	2.9	9
86	Stimulated Brillouin scattering in highly birefringent microstructure fiber: experimental analysis. Optics Letters, 2008, 33, 2329.	3.3	9
87	Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method. Smart Materials and Structures, 2013, 22, 125035.	3.5	9
88	Design and Optimization of an Optofluidic Ring Resonator Based on Liquid-Core Hybrid ARROWs. IEEE Photonics Journal, 2014, 6, 1-14.	2.0	8
89	Spectral discrimination of planktonic cyanobacteria and microalgae based on deep UV fluorescence. Sensors and Actuators B: Chemical, 2019, 284, 228-235.	7.8	8
90	Continuous Liquid Level Sensor Based on Coupled Light Diffusing Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	2.9	8

4

#	Article	IF	CITATIONS
91	A reconstruction technique for stimulated Brillouin scattering fiber-optic sensors for simultaneous measurement of temperature and strain. , 0, , .		7
92	Differential Techniques for High-Resolution BOTDA: An Analytical Approach. IEEE Photonics Technology Letters, 2012, 24, 1295-1297.	2.5	7
93	Refractive index measurements by fiber Bragg grating sensor. , 0, , .		6
94	Self-Demodulated Heterodyne Frequency Domain Distributed Brillouin Fiber Sensor. IEEE Photonics Technology Letters, 2007, 19, 447-449.	2.5	6
95	Brillouin Optical Frequency-Domain Single-Ended Distributed Fiber Sensor. IEEE Sensors Journal, 2009, 9, 221-222.	4.7	6
96	Brillouin Optical Time Domain Analysis in Silica Fibers at 850-nm Wavelength. IEEE Photonics Technology Letters, 2016, 28, 2577-2580.	2.5	6
97	Power Coupling Between Light Diffusing Fibers: Modelling and Validation. Journal of Lightwave Technology, 2022, 40, 813-821.	4.6	6
98	An integrated device for fast and sensitive immunosuppressant detection. Analytical and Bioanalytical Chemistry, 2022, 414, 3243-3255.	3.7	6
99	Fiber Bragg grating as ultrasonic wave sensors. , 2004, 5502, 84.		5
100	Optimization of metal-clad waveguides for sensitive fluorescence detection. Optics Express, 2006, 14, 3512.	3.4	5
101	Dynamic strain measurements on a cantilever beam using stimulated Brillouin scattering. Smart Materials and Structures, 2010, 19, 045024.	3.5	5
102	Spatial Resolution Enhancement in Preactivated BOTDA Schemes by Numerical Processing. IEEE Photonics Technology Letters, 2012, 24, 1003-1005.	2.5	5
103	Hollow-Core-Integrated Optical Waveguides for Mid-IR Sensors. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	5
104	Selective coupling of Whispering Gallery Modes in film coated micro-resonators. Optics Express, 2018, 26, 11737.	3.4	5
105	Planar antiresonant reflecting optical waveguides as sensors for liquid substances. , 0, , .		4
106	A \$hbox{2}imeshbox{2}\$ Optofluidic Multimode Interference Coupler. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1478-1484.	2.9	4
107	High-Spatial- and Spectral-Resolution Time-Domain Brillouin Distributed Sensing by Use of Two Frequency-Shifted Optical Beam Pairs. IEEE Photonics Journal, 2012, 4, 1900-1908.	2.0	4

108 Optofluidics: a new tool for sensing. , 2013, , .

#	Article	IF	CITATIONS
109	Distributed optical fiber sensors for integrated monitoring of railway infrastructures. , 2014, , .		4
110	Distributed optical fiber sensors for integrated monitoring of railway infrastructures. Structural Monitoring and Maintenance, 2014, 1, 173-182.	1.7	4
111	An iterative method for optical reconstruction of graded index profiles in planar dielectric waveguides. Journal of Lightwave Technology, 2000, 18, 729-736.	4.6	3
112	<title>ARROW waveguides-based refractometer for chemical and biochemical sensing application</title> . , 2002, 4578, 454.		3
113	Accurate distributed temperature measurements by Brillouin scattering fiber-optic sensor. , 0, , .		3
114	Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors. , 2009, , .		3
115	Railway traffic monitoring using Brillouin distributed sensors. , 2013, , .		3
116	Limitations and strategies to improve measurement accuracy in differential pulse-width pair Brillouin optical time-domain analysis sensing. Applied Optics, 2013, 52, 3020.	1.8	3
117	A newly designed optical biochip for a TDM-POCT device. , 2014, , .		3
118	All-polymeric high-Q optofluidic Fabry–Perot resonator. Optics Letters, 2021, 46, 352.	3.3	3
119	A Point-of-Care Device for Immunosuppressants Monitoring in Transplanted Patients. Lecture Notes in Electrical Engineering, 2015, , 27-31.	0.4	3
120	Optical tomography for dielectric profiling in processing electronic materials. Chemical Engineering Journal, 2000, 77, 137-142.	12.7	2
121	<title>Novel data analysis approach for temperature and strain profile reconstruction in distributed fiber optics sensors based on stimulated Brillouin scattering</title> . , 2002, 4576, 108.		2
122	Design, fabrication and characterization of integrated antiresonant hollow core waveguides for photonics integrated circuits. , 0, , .		2
123	Polymer optical fiber tapers for biosensing applications. , 2009, , .		2
124	Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio. , 2010, , .		2
125	Micro flow cytometer with 3D hydrodynamic focusing. , 2012, , .		2
126	Electromagnetic Sensing Techniques for Non-Destructive Diagnosis of Civil Engineering Structures. , 2012, , .		2

#	Article	IF	CITATIONS
127	Analysis of the Brillouin gain spectrum in a graded-index multimode fiber. , 2014, , .		2
128	Whispering gallery modes in self-assembled bottle microresonators coupled to planar waveguide. Proceedings of SPIE, 2016, , .	0.8	2
129	Experimental demonstration of a Brillouin optical frequency-domain reflectometry (BOFDR) sensor. , 2017, , .		2
130	A waveguide absorption filter for fluorescence measurements. Sensors and Actuators B: Chemical, 2019, 281, 90-95.	7.8	2
131	High spatial resolution physical and chemical sensing based on BOFDA. , 2019, , .		2
132	Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels. Micromachines, 2022, 13, 1028.	2.9	2
133	Waveguide based optofluidics. Proceedings of SPIE, 2010, , .	0.8	1
134	Centimeter-range spatial resolution distributed sensing by BOFDA. Proceedings of SPIE, 2011, , .	0.8	1
135	Distributed Strain and Temperature Sensing at CM-Scale Spatial Resolution by BOFDA. Lecture Notes in Electrical Engineering, 2012, , 235-239.	0.4	1
136	Modal analysis of a cantilever beam by use of the slope-assisted BOTDA method for damage identification. Proceedings of SPIE, 2013, , .	0.8	1
137	Microfluidic Optical Methods: A Review. Handbook of Environmental Chemistry, 2014, , 257-278.	0.4	1
138	Optical heterogeneous bioassay for the detection of the inflammatory biomarker suPAR. , 2015, , .		1
139	Novel Optical Chemical Sensor Based on Molecularly Imprinted Polymer Inside a Trench Micro-machined in Double Plastic Optical Fiber. Procedia Engineering, 2016, 168, 363-366.	1.2	1
140	A PDMS photonic crystal slab for THz sensing. , 2016, , .		1
141	Simultaneous strain and temperature measurements using dual-wavelength BOTDA. Proceedings of SPIE, 2017, , .	0.8	1
142	Light diffusing fibers for liquid level sensing. , 2021, , .		1
143	LONG-TERM TEMPERATURE MONITORING OF ACTIVE VOLCANIC AREAS BY DISTRIBUTED OPTICAL FIBER SENSORS. , 2008, , .		1
144	Railway Traffic Monitoring by Use of Distributed Optical Fiber Sensors. , 0, , .		1

9

#	Article	IF	CITATIONS
14	The integration of novel diagnostics techniques for multi-scale monitoring of large civil infrastructures. Advances in Geosciences, 0, 19, 67-74.	12.0	1
146	BRILLOUIN-BASED FIBER-OPTICS SENSORS FOR VECTORIAL DISLOCATION MONITORING OF PIPELINES. , 2008, , .		1
147	Optical characterization of doping profiles in silicon. , 2000, , .		0
148	Distributed fiber optic Brillouin sensing in the frequency domain. , 2004, 5502, 500.		0
149	Polymer-on-glass waveguide structure for efficient fluorescence-based optical biosensors. , 2005, , .		0
150	High-resolution distributed fiber-optic frequency-domain Brillouin sensing. , 2005, , .		0
151	Frequency-domain analysis of stimulated brillouin scattering in single-mode optical fibers. , 0, , .		0
152	Fabrication and characterization of a liquid core integrated interferometer. , 2008, , .		0
153	Dynamic strain measurement at randomly addressed optical fiber positions using a time-domain Brillouin sensing system. Proceedings of SPIE, 2009, , .	0.8	0
154	Perfluorinated polymer optical fiber tapers for fluorescence collection. , 2009, , .		0
158	Bridge monitoring by Brillouin-based distributed strain measurements. Proceedings of SPIE, 2010, , .	0.8	0
156	Comment on: "Slow Light―in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index. Optics Express, 2010, 18, 1788.	3.4	0
157	Differential pulse-width pair BOTDA with fast fall-time pulses. , 2011, , .		0
158	Liquid core integrated ring resonator. Proceedings of SPIE, 2011, , .	0.8	0
159	Optofluidics: waveguides and devices. Proceedings of SPIE, 2012, , .	0.8	0
160	Optofluidic silicon-polymer integrated waveguides. , 2012, , .		0
161	Integrated liquid jet waveguide for fluorescence spectroscopy on chip. , 2013, , .		0
162	Optofluidic fiber optic. , 2013, , .	_	0

#	Article	IF	CITATIONS
163	Liquid jet waveguide for Raman spectroscopy. , 2014, , .		0
164	Novel Approaches for CM-Scale Resolution and Long-Range Sensing by Stimulated Brillouin Scattering in Optical Fibers. Lecture Notes in Electrical Engineering, 2014, , 333-336.	0.4	0
165	Brillouin optical frequency domain analysis in polymer optical fiber. , 2014, , .		0
166	Liquid jet waveguide for spectroscopic sensors. , 2014, , .		0
167	Modal analysis of an aluminum rectangular plate by use of the balanced-detection DPP-BOTDA method. , 2014, , .		0
168	Optofluidic hybrid platform with integrated solid core waveguides. Proceedings of SPIE, 2014, , .	0.8	0
169	Design of a hybrid optofluidic ring resonator. , 2014, , .		Ο
170	Polymeric Ring Resonators for Label-Free Biosensing. , 2015, , .		0
171	A fuel level sensor for aeronautical applications. Proceedings of SPIE, 2015, , .	0.8	0
172	Fabrication and optimization of su-8 microring resonators. , 2015, , .		0
173	Silicon-PDMS optofluidic integration. , 2015, , .		0
174	Novel fluorescence-based POCT platform for therapeutic drug monitoring in transplanted patients (Conference Presentation). , 2017, , .		0
175	Portable Fluorescence Sensor for Organic Contaminants and Cyanobacterial Detection in Waters. Lecture Notes in Electrical Engineering, 2021, , 77-83.	0.4	0
176	ARROW STRUCTURES FOR SENSING APPLICATIONS. , 2004, , .		0
177	Structural Health Monitoring by High-Resolution Brillouin-based Strain Measurements. , 2006, , .		Ο
178	Integrated Optofluidic Mach-Zehnder Interferometer. Lecture Notes in Electrical Engineering, 2010, , 373-376.	0.4	0
179	High Sensitivity Mach–Zehnder Interferometer for Sub-Nanoliter Liquid Sensing. Lecture Notes in Electrical Engineering, 2011, , 305-309.	0.4	0
180	Low Level Detection of Organic Compounds Based on Autofluorescence in Optofluidic Liquid Jet Waveguide. , 2013, , .		0

#	Article	IF	CITATIONS
181	Polymer Microflow Cytofluorometer. Lecture Notes in Electrical Engineering, 2014, , 223-226.	0.4	0
182	Water-Jet Waveguide for Fluorescence Spectroscopy. Lecture Notes in Electrical Engineering, 2014, , 255-259.	0.4	0
183	Real Time Flow-Through Biosensor. Lecture Notes in Electrical Engineering, 2018, , 177-182.	0.4	0
184	Glass-based microresonators. , 2018, , .		0
185	Waveguide-based coupling of coated micro-spherical resonators. , 2019, , .		0
186	High numerical aperture waveguide absorption filter for fluorescence detection. , 2019, , .		0
187	UV Autofluorescence Spectroscopy for Cyanobacteria Monitoring and Discrimination in Source Water. Lecture Notes in Electrical Engineering, 2020, , 247-252.	0.4	0
188	Combining micro-optics and integrated optics: a case study on bulk resonators. , 2022, , .		0