Richard A Franklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324105/publications.pdf

Version: 2024-02-01

58 papers

5,537 citations

28 h-index 53 g-index

58 all docs 58 docs citations

58 times ranked 9288 citing authors

#	Article	IF	CITATIONS
1	Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging, 2022, 14, 3365-3386.	3.1	5
2	Signaling Intermediates (MAPK and PI3K) as Therapeutic Targets in NSCLC. Current Pharmaceutical Design, 2014, 20, 3944-3957.	1.9	55
3	Increased NGAL (Lnc2) expression after chemotherapeutic drug treatment. Advances in Biological Regulation, 2013, 53, 146-155.	2.3	14
4	Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle, 2012, 11, 4447-4461.	2.6	22
5	Novel approaches to target cancer initiating cells–Eliminating the root of the cancer. Advances in Biological Regulation, 2012, 52, 249-264.	2.3	13
6	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	1.8	279
7	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	1.8	41
8	Targeting the cancer initiating cell: The Achilles' heel of cancer. Advances in Enzyme Regulation, 2011, 51, 152-162.	2.6	16
9	Involvement of Akt and mTOR in chemotherapeutic- and hormonal-based drug resistance and response to radiation in breast cancer cells. Cell Cycle, 2011, 10, 3003-3015.	2.6	77
10	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	1.8	509
11	Involvement of Akt-1 and mTOR in Sensitivity of Breast Cancer to Targeted Therapy. Oncotarget, 2011, 2, 538-550.	1.8	73
12	The involvement of CaM-KII in insulin induced cell proliferation. Cell Cycle, 2009, 8, 1979-1983.	2.6	3
13	Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. Advances in Enzyme Regulation, 2008, 48, 113-135.	2.6	20
14	A multipronged approach to prostate cancer. Cancer Biology and Therapy, 2008, 7, 594-595.	3.4	0
15	Targeting Survival Cascades Induced by Activation of Ras/Raf/MEK/ERK and PI3K/Akt Pathways to Sensitize Cancer Cells to Therapy. , 2008, , 81-114.		2
16	17-Allylamino-17-demethoxygeldanamycin enhances the lethality of deoxycholic acid in primary rodent hepatocytes and established cell lines. Molecular Cancer Therapeutics, 2007, 6, 618-632.	4.1	38
17	Polyphenols in breast cancer treatment. Cancer Biology and Therapy, 2007, 6, 62-63.	3.4	1
18	Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1263-1284.	4.1	1,858

#	Article	IF	CITATIONS
19	Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in hematopoietic drug resistance. Advances in Enzyme Regulation, 2007, 47, 64-103.	2.6	77
20	Reactive Oxygen Intermediates and Signaling Through Kinase Pathways. Antioxidants and Redox Signaling, 2006, 8, 1745-1748.	5.4	26
21	Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways. Antioxidants and Redox Signaling, 2006, 8, 1775-1789.	5.4	685
22	Molecular Pathways Leading to Oxidative Stress-Induced Phosphorylation of Akt. Antioxidants and Redox Signaling, 2006, 8, 1749-1756.	5.4	41
23	Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Advances in Enzyme Regulation, 2006, 46, 249-279.	2.6	584
24	EGF Induces Cell Motility and Multi-Drug Resistance Gene Expression in Breast Cancer Cells. Cell Cycle, 2006, 5, 2820-2826.	2.6	62
25	Inhibition of the CaM-Kinases augments cell death in response to oxygen radicals and oxygen radical inducing cancer therapies in MCF-7 human breast cancer cells. Cancer Biology and Therapy, 2006, 5, 1022-1030.	3.4	30
26	OSU-03012 in the Treatment of Glioblastoma. Molecular Pharmacology, 2006, 70, 437-439.	2.3	17
27	Activation of the Calcium/Calmodulin-Dependent Protein Kinases as a Consequence of Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 1807-1817.	5.4	47
28	Critical Roles of the Raf/MEK/ERK Pathway in Apoptosis and Drug Resistance. , 2006, , 101-134.		2
29	Inhibition of CREB transcriptional activity in human T lymphocytes by oxidative stress. Free Radical Biology and Medicine, 2005, 38, 1653-1661.	2.9	10
30	Calcium/Calmodulin-Dependent Kinase I and Calcium/Calmodulin-Dependent Kinase Kinase Participate in the Control of Cell Cycle Progression in MCF-7 Human Breast Cancer Cells. Cancer Research, 2005, 65, 5408-5416.	0.9	80
31	Two targets are better than one, Promising combination therapy to treat breast cancer. Cancer Biology and Therapy, 2005, 4, 1190-1191.	3.4	1
32	Conditional EGFR Promotes Cell Cycle Progression and Prevention of Apoptosis in the Absence of Autocrine Cytokines. Cell Cycle, 2005, 4, 822-830.	2.6	27
33	Effects of Endogenous Epidermal Growth Factor Receptor Signaling on DNA Synthesis and ERK Activation in a Cytokine-Dependent Hematopoietic Cell Line. Cell Cycle, 2005, 4, 818-821.	2.6	11
34	Calcium/calmodulin-dependent protein kinases as potential targets in cancer therapy. Expert Opinion on Therapeutic Targets, 2005, 9, 791-808.	3.4	36
35	The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: what's genetics got to do with it?. Expert Opinion on Therapeutic Targets, 2005, 9, 1009-1030.	3.4	47
36	B-Raf and Insulin Synergistically Prevent Apoptosis and Induce Cell Cycle Progression in Hematopoietic Cell. Cell Cycle, 2004, 3, 184-191.	2.6	10

#	Article	IF	CITATIONS
37	Redox Regulation of the Calcium/Calmodulin-dependent Protein Kinases. Journal of Biological Chemistry, 2004, 279, 44573-44581.	3.4	114
38	Effects of a conditionally active v-ErbB and an EGF-R inhibitor on transformation of NIH-3T3 cells and abrogation of cytokine dependency of hematopoietic cells. Oncogene, 2004, 23, 7810-7820.	5.9	19
39	B-raf and insulin synergistically prevent apoptosis and induce cell cycle progression in hematopoietic cells. Cell Cycle, 2004, 3, 189-96.	2.6	8
40	The Use of the Yeast Two-Hybrid System to Measure Protein-Protein Interactions that Occur Following Oxidative Stress., 2003, 218, 47-58.		0
41	Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene, 2003, 22, 2478-2492.	5.9	95
42	Models of Anergy in the Human Jurkat T Cell Line. Assay and Drug Development Technologies, 2003, 1 , 537-544.	1.2	10
43	A New Hope for Treatment of Glioblastomas. Cancer Biology and Therapy, 2003, 2, 354-355.	3.4	0
44	Participation of the Calcium/Calmodulin-dependent Kinases in Hydrogen Peroxide-induced lîB Phosphorylation in Human T Lymphocytes. Journal of Biological Chemistry, 2002, 277, 30469-30476.	3.4	54
45	Synergistic effects of pi3k/akt on abrogation of cytokine-dependency induced by oncogenic raf. Advances in Enzyme Regulation, 2001, 41, 289-323.	2.6	22
46	Regulation of Pyk2 expression by p56Lck in Jurkat T lymphocytes. Cellular Signalling, 2001, 13, 65-69.	3.6	8
47	A conditionally-active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene, 2000, 19, 526-536.	5.9	76
48	T Cell Receptor Assembly and Expression in the Absence of Calnexin. Archives of Biochemistry and Biophysics, 2000, 378, 182-189.	3.0	10
49	Oxidative Stress Regulates the Interaction of p16 with Cdk4. Biochemical and Biophysical Research Communications, 2000, 275, 764-767.	2.1	14
50	Calcium-induced ERK activation in human T lymphocytes occurs via p56Lck and CaM-kinase. Molecular Immunology, 2000, 37, 675-683.	2.2	56
51	Human CD45RA+ and CD45RO+ T cells exhibit similar CD3/T cell receptor-mediated transmembrane signaling capacities but differ in response to co-stimulatory signals. European Journal of Immunology, 1994, 24, 1391-1395.	2.9	20
52	Macrophages suppress lectin-induced proliferation of lymphocytes from aged rats. Mechanisms of Ageing and Development, 1993, 67, 33-46.	4.6	28
53	Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochemical and Biophysical Research Communications, 1992, 186, 1315-1321.	2.1	66
54	Signal transduction by interleukin 2 in human T cells: Activation of tyrosine and ribosomal S6 kinases and cell-cycle regulatory genes. Journal of Cellular Physiology, 1992, 151, 367-377.	4.1	28

#	Article	IF	CITATION
55	The proliferative response of rat T cells to calcium ionophores increases with age. Cellular Immunology, 1990, 130, 416-428.	3.0	13
56	Glutathione Augments in Vitro Proliferative Responses of Lymphocytes to Concanavalin A to a Greater Degree in Old than in Young Rats. Journal of Nutrition, 1990, 120, 1710-1717.	2.9	32
57	A Soluble 61-kDa Protein is Associated with Inhibition of Lectin-Induced Proliferation and IL-2 Synthesis. Experimental Biology and Medicine, 1987, 186, 1-12.	2.4	3
58	Induction of IL-2 and lymphokine activated killer cells in the cat. Veterinary Immunology and Immunopathology, 1987, 16, 1-10.	1,2	42