Trevor D Lamb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7323939/publications.pdf Version: 2024-02-01

TOEVOD D LAMB

#	Article	IF	CITATIONS
1	Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience, 2007, 8, 960-976.	10.2	400
2	Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in Retinal and Eye Research, 2013, 36, 52-119.	15.5	306
3	Phototransduction, Dark Adaptation, and Rhodopsin Regeneration The Proctor Lecture. , 2006, 47, 5138.		230
4	A singleâ€ ϵ ell transcriptome atlas of the adult human retina. EMBO Journal, 2019, 38, e100811.	7.8	185
5	The Gain of Rod Phototransduction. Neuron, 2000, 27, 525-537.	8.1	176
6	Evolution of vertebrate retinal photoreception. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2911-2924.	4.0	57
7	Evolution of Vertebrate Phototransduction: Cascade Activation. Molecular Biology and Evolution, 2016, 33, 2064-2087.	8.9	44
8	The Origin of the Vertebrate Eye. Evolution: Education and Outreach, 2008, 1, 415-426.	0.8	35
9	It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Open Biology, 2018, 8, .	3.6	34
10	Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Progress in Retinal and Eye Research, 2020, 76, 100823.	15.5	27
11	Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction. Journal of Physiology, 2022, 600, 4585-4601.	2.9	26
12	The evolution of phototransduction and eyes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2791-2793.	4.0	25
13	Evolution of the vertebrate phototransduction cascade activation steps. Developmental Biology, 2017, 431, 77-92.	2.0	25
14	Implications of dimeric activation of PDE6 for rod phototransduction. Open Biology, 2018, 8, .	3.6	20
15	Visual Opsin Diversity in Sharks and Rays. Molecular Biology and Evolution, 2020, 37, 811-827.	8.9	20
16	Topographic Rod Recovery Profiles after a Prolonged Dark Adaptation in Subjects with Reticular Pseudodrusen. Ophthalmology Retina, 2018, 2, 1206-1217.	2.4	18
17	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. PLoS Biology, 2020, 18, e3000750.	5.6	18
18	Analysis of Paralogons, Origin of the Vertebrate Karyotype, and Ancient Chromosomes Retained in Extant Species. Genome Biology and Evolution, 2021, 13, .	2.5	17

TREVOR D LAMB

#	Article	IF	CITATIONS
19	Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction. Molecular Vision, 2016, 22, 674-96.	1.1	14
20	Evolution of the calcium feedback steps of vertebrate phototransduction. Open Biology, 2018, 8, 180119.	3.6	12
21	Modelling the initial phase of the human rod photoreceptor response to the onset of steady illumination. Documenta Ophthalmologica, 2012, 124, 125-131.	2.2	11
22	Evolution of the shut-off steps of vertebrate phototransduction. Open Biology, 2018, 8, 170232.	3.6	10
23	A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes. Open Biology, 2020, 10, 190241.	3.6	10
24	The kinetics of regeneration of rhodopsin under enzyme-limited availability of 11-cis retinoid. Vision Research, 2015, 110, 23-33.	1.4	8
25	Phototransduction gain at the C-protein, transducin, and effector protein, phosphodiesterase-6, stages in retinal rods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8653-8654.	7.1	6
26	Light Adaptation in Photoreceptors. , 2011, , 429-442.		5
27	Evolution of the eye. Scientists now have a clear vision of how our notoriously complex eye came to be. Scientific American, 2011, 305, 64-9.	1.0	5
28	Functional Imaging of the Outer Retinal Complex using High Fidelity Imaging Retinal Densitometry. Scientific Reports, 2020, 10, 4494.	3.3	3
29	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. , 2020, 18, e3000750.		0
30	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. , 2020, 18, e3000750.		0
31	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. , 2020, 18, e3000750.		0
32	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. , 2020, 18, e3000750.		0
33	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. , 2020, 18, e3000750.		0
34	Mechanosensitivity is an essential component of phototransduction in vertebrate rods. , 2020, 18, e3000750.		0