
Jochen Graw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7323614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Germ-line mutations in p27 <i> ^{Kip1} </i> cause a multiple endocrine neoplasia syndrome in rats and humans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15558-15563.	7.1	570
2	A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice. Cell, 2009, 137, 961-971.	28.9	555
3	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
4	Rapamycin extends murine lifespan but has limited effects on aging. Journal of Clinical Investigation, 2013, 123, 3272-3291.	8.2	333
5	Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development (Cambridge), 2004, 131, 1145-1155.	2.5	306
6	Genetics of crystallins: Cataract and beyond. Experimental Eye Research, 2009, 88, 173-189.	2.6	258
7	Eye Development. Current Topics in Developmental Biology, 2010, 90, 343-386.	2.2	211
8	The genetic and molecular basis of congenital eye defects. Nature Reviews Genetics, 2003, 4, 876-888.	16.3	197
9	Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nature Methods, 2005, 2, 403-404.	19.0	176
10	Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development (Cambridge), 2004, 131, 6131-6140.	2.5	168
11	Haemophilia A: from mutation analysis to new therapies. Nature Reviews Genetics, 2005, 6, 488-501.	16.3	156
12	Altered aggregation properties of mutant γ-crystallins cause inherited cataract. EMBO Journal, 2002, 21, 6005-6014.	7.8	147
13	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
14	Congenital hereditary cataracts. International Journal of Developmental Biology, 2004, 48, 1031-1044.	0.6	133
15	Mouse phenotyping. Methods, 2011, 53, 120-135.	3.8	128
16	Genetic aspects of embryonic eye development in vertebrates. Genesis, 1996, 18, 181-197.	2.1	121
17	lonizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutation Research - Reviews in Mutation Research, 2016, 770, 238-261.	5.5	105
18	Permanent Neonatal Diabetes in <i>INS</i> C94Y Transgenic Pigs. Diabetes, 2013, 62, 1505-1511.	0.6	99

Jochen Graw

#	Article	IF	CITATIONS
19	Nuclear breakdown during terminal differentiation of primary lens fibres in mice: A transmission electron microscopic study. Experimental Eye Research, 1991, 52, 647-659.	2.6	91
20	Requirement of the RNA-editing Enzyme ADAR2 for Normal Physiology in Mice. Journal of Biological Chemistry, 2011, 286, 18614-18622.	3.4	91
21	Clinical and experimental advances in congenital and paediatric cataracts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1234-1249.	4.0	90
22	Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Research, 2002, 62, 3048-51.	0.9	89
23	CRYBA4, a Novel Human Cataract Gene, Is Also Involved in Microphthalmia. American Journal of Human Genetics, 2006, 79, 702-709.	6.2	87
24	Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nature Communications, 2017, 8, 155.	12.8	87
25	Mutually regulated expression of <i>Pax6</i> and <i>Six3</i> and its implications for the <i>Pax6</i> haploinsufficient lens phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8719-8724.	7.1	86
26	Mouse mutants as models for congenital retinal disorders. Experimental Eye Research, 2005, 81, 503-512.	2.6	80
27	Cataract mutations and lens development1Dedicated to Prof. Udo H. Ehling on the occasion of his 70th birthday.1. Progress in Retinal and Eye Research, 1999, 18, 235-267.	15.5	79
28	Mouse models of cataract. Journal of Genetics, 2009, 88, 469-486.	0.7	79
29	Three Murine Cataract Mutants (Cat2) Are Defective in Different γ-Crystallin Genes. Genomics, 1998, 52, 152-158.	2.9	77
30	Systemic First-Line Phenotyping. Methods in Molecular Biology, 2009, 530, 463-509.	0.9	70
31	Mutation in the βA3/A1-Crystallin Encoding Gene Cryba1 Causes a Dominant Cataract in the Mouse. Genomics, 1999, 62, 67-73.	2.9	67
32	Congenital cataract and macular hypoplasia in humans associated with a de novo mutation in CRYAA and compound heterozygous mutations in P. Graefe's Archive for Clinical and Experimental Ophthalmology, 2006, 244, 912-919.	1.9	65
33	Cytochrome <i>c</i> oxidase subunit 4 isoform 2â€knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB Journal, 2012, 26, 3916-3930.	0.5	62
34	Identification of a novel, putative cataract-causing allele in CRYAA (G98R) in an Indian family. Molecular Vision, 2006, 12, 768-73.	1.1	61
35	Mutation Analysis of Congenital Cataracts in Indian Families: Identification of SNPs and a New Causative Allele in <i>CRYBB2</i> Gene. , 2004, 45, 3599.		59
36	Variations of eye size parameters among different strains of mice. Mammalian Genome, 2006, 17, 851-857.	2.2	59

#	Article	IF	CITATIONS
37	Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System. PLoS ONE, 2012, 7, e38310.	2.5	56
38	Peroxidasin is essential for eye development in the mouse. Human Molecular Genetics, 2014, 23, 5597-5614.	2.9	55
39	Characterization of a Mutation in the Lens-specific MP70 Encoding Gene of the Mouse Leading to a Dominant Cataract. Experimental Eye Research, 2001, 73, 867-876.	2.6	52
40	Electroretinography as a Screening Method for Mutations Causing Retinal Dysfunction in Mice. , 2004, 45, 601.		51
41	Betacellulin Overexpression in Transgenic Mice Causes Disproportionate Growth, Pulmonary Hemorrhage Syndrome, and Complex Eye Pathology. Endocrinology, 2005, 146, 5237-5246.	2.8	51
42	Isolation and Embryonic Expression of the Novel Mouse Gene Hic1, the Homologue of HIC1, a Candidate Gene for the Miller-Dieker Syndrome. Human Molecular Genetics, 1999, 8, 697-710.	2.9	50
43	Developmental genetics in ophthalmology. Ophthalmic Genetics, 2003, 24, 1-33.	1.2	50
44	Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biology, 2018, 16, e2005019.	5.6	48
45	Visualizing corticotropinâ€releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele. Journal of Comparative Neurology, 2012, 520, 3150-3180.	1.6	46
46	Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2015, 56, 34-44.	6.5	46
47	Up-regulation of novel intermediate filament proteins in primary fiber cells: An indicator of all vertebrate lens fiber differentiation?. The Anatomical Record, 2000, 258, 25-33.	1.8	43
48	Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Molecular Vision, 2012, 18, 1093-106.	1.1	43
49	Genetic and Allelic Heterogeneity ofCrygMutations in Eight Distinct Forms of Dominant Cataract in the Mouse. , 2004, 45, 1202.		42
50	"Sighted C3H" mice - a tool for analysing the influence of vision on mouse behaviour?. Frontiers in Bioscience - Landmark, 2008, Volume, 5810.	3.0	41
51	Aphakia (ak), a mouse mutation affecting early eye development: Fine mapping, consideration of candidate genes and alteredPax6 andSix3 gene expression pattern. Genesis, 1998, 23, 299-316.	2.1	40
52	Levels of p27 Sensitize to Dual PI3K/mTOR Inhibition. Molecular Cancer Therapeutics, 2011, 10, 1450-1459.	4.1	40
53	Innovations in phenotyping of mouse models in the German Mouse Clinic. Mammalian Genome, 2012, 23, 611-622.	2.2	40
54	Three NovelPax6Alleles in the Mouse Leading to the Same Small-Eye Phenotype Caused by Different Consequences at Target Promoters. , 2005, 46, 4671.		38

#	Article	IF	CITATIONS
55	Functional compensation among HMGN variants modulates the DNase I hypersensitive sites at enhancers. Genome Research, 2015, 25, 1295-1308.	5.5	38
56	Cancerâ€retina antigens as potential paraneoplastic antigens in melanomaâ€associated retinopathy. International Journal of Cancer, 2009, 124, 140-149.	5.1	37
57	Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 416insG mice. Mammalian Genome, 2010, 21, 13-27.	2.2	36
58	Pleiotropic effects in Eya3knockout mice. BMC Developmental Biology, 2008, 8, 118.	2.1	35
59	Molecular analysis of cataract families in India: new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Molecular Vision, 2010, 16, 1837-47.	1.1	35
60	Mapping of a novel MEN-like syndrome locus to rat Chromosome 4. Mammalian Genome, 2004, 15, 135-141.	2.2	32
61	Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development (Cambridge), 2015, 142, 3009-20.	2.5	32
62	Genetical and biochemical studies of a dominant cataract mutant in mice. Experimental Eye Research, 1984, 39, 37-45.	2.6	31
63	Dominant cataract and recessive specific locus mutations in offspring of X-irradiated male mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1986, 159, 47-54.	1.0	31
64	α-Crystallins are involved in specific interactions with the murine γD/E/F-crystallin-encoding gene. Gene, 1994, 144, 171-178.	2.2	31
65	Reduced Corneal Thickness and Enlarged Anterior Chamber in a Novel ColVIIIa2G257DMutant Mouse. , 2009, 50, 5653.		31
66	Novel Allele ofCrybb2in the Mouse and Its Expression in the Brain. , 2008, 49, 1533.		30
67	Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. Radiation and Environmental Biophysics, 2018, 57, 99-113.	1.4	30
68	A novel GJA8 mutation causing a recessive triangular cataract. Molecular Vision, 2008, 14, 851-6.	1.1	30
69	Mouse models of congenital cataract. Eye, 1999, 13, 438-444.	2.1	28
70	Agonistic and Antagonistic Action of AP2, Msx2, Pax6, Prox1 and Six3 in the Regulation of <i>Sox2</i> Expression. Ophthalmic Research, 2005, 37, 301-309.	1.9	27
71	Variation of the response to the optokinetic drum among various strains of mice. Frontiers in Bioscience - Landmark, 2008, Volume, 6269.	3.0	27
72	Pitx3 directly regulates Foxe3 during early lens development. International Journal of Developmental Biology, 2013, 57, 741-751.	0.6	27

#	Article	IF	CITATIONS
73	Lack of F8 mRNA: a novel mechanism leading to hemophilia A. Blood, 2006, 107, 2759-2765.	1.4	26
74	Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains. Mammalian Genome, 2013, 24, 198-205.	2.2	26
75	Imbalances in the eye lens proteome are linked to cataract formation. Nature Structural and Molecular Biology, 2021, 28, 143-151.	8.2	26
76	Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene. Molecular Vision, 2007, 13, 962-7.	1.1	26
77	Visual capabilities and cortical maps in BALB/c mice. European Journal of Neuroscience, 2012, 36, 2801-2811.	2.6	25
78	Histological and biochemical characterization of the murine cataract mutant Nop. Experimental Eye Research, 1990, 50, 449-456.	2.6	24
79	Mutation in a Novel Connexin-like Gene (<i>Gjf1</i>) in the Mouse Affects Early Lens Development and Causes a Variable Small-Eye Phenotype. , 2008, 49, 1525.		24
80	New Mutation in the Mouse Xpd/Ercc2 Gene Leads to Recessive Cataracts. PLoS ONE, 2015, 10, e0125304.	2.5	24
81	V76D mutation in a conserved gD-crystallin region leads to dominant cataracts in mice. Mammalian Genome, 2002, 13, 452-455.	2.2	23
82	The KORA Eye Study: A Population-Based Study on Eye Diseases in Southern Germany (KORA F4). , 2011, 52, 7778.		22
83	Are mouse lens epithelial cells more sensitive to Î ³ -irradiation than lymphocytes?. Radiation and Environmental Biophysics, 2013, 52, 279-286.	1.4	22
84	A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes. Mammalian Genome, 2020, 31, 30-48.	2.2	22
85	Reduced levels of γ-crystallin transcripts during embryonic development of murine Cat2 nop mutant lenses. Graefe's Archive for Clinical and Experimental Ophthalmology, 1995, 233, 795-800.	1.9	21
86	Relative roles of the different Pax6 domains for pancreatic alpha cell development. BMC Developmental Biology, 2010, 10, 39.	2.1	21
87	A novel human CRYGD mutation in a juvenile autosomal dominant cataract. Molecular Vision, 2010, 16, 887-96.	1.1	21
88	Murine γE-crystallin is distinct from murine γ2-crystallin. Gene, 1991, 104, 265-270.	2.2	20
89	Crybb2 coding for βB2-crystallin affects sensorimotor gating and hippocampal function. Mammalian Genome, 2013, 24, 333-348.	2.2	20
90	Mouse Mutants for Eye Development. Results and Problems in Cell Differentiation, 2000, 31, 219-256.	0.7	20

#	Article	lF	CITATIONS
91	Characterization of Scat (suture cataract), a dominant cataract mutation in mice. Experimental Eye Research, 1989, 49, 469-477.	2.6	19
92	Regulation of the Human SIX3 Gene Promoter. Biochemical and Biophysical Research Communications, 2001, 287, 372-376.	2.1	19
93	First Mutation in the \hat{l}^2 A2-crystallin Encoding Gene is Associated with Small Lenses and Age-Related Cataracts. , 2011, 52, 2571.		19
94	From eyeless to neurological diseases. Experimental Eye Research, 2017, 156, 5-9.	2.6	19
95	A 6-bp deletion in the Crygc gene leading to a nuclear and radial cataract in the mouse. Investigative Ophthalmology and Visual Science, 2002, 43, 236-40.	3.3	18
96	Common eye diseases in older adults of southern Germany: results from the KORA-Age study. Age and Ageing, 2017, 46, 481-486.	1.6	17
97	Mouse models for microphthalmia, anophthalmia and cataracts. Human Genetics, 2019, 138, 1007-1018.	3.8	17
98	A mouse model for intellectual disability caused by mutations in the X-linked 2′‑O‑methyltransferase Ftsj1 gene. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2083-2093.	3.8	17
99	Close Linkage of the Dominant Cataract Mutations (Cat-2) with Idh-1 and Cryge on Mouse Chromosome 1. Genomics, 1994, 23, 240-242.	2.9	16
100	Pleiotropic Functions for Transcription Factor Zscan10. PLoS ONE, 2014, 9, e104568.	2.5	16
101	Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria. PLoS Pathogens, 2018, 14, e1007026.	4.7	16
102	CREB Signaling Mediates Dose-Dependent Radiation Response in the Murine Hippocampus Two Years after Total Body Exposure. Journal of Proteome Research, 2020, 19, 337-345.	3.7	16
103	Genomic sequences of murine γB- and γC-crystallm-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human γ-crystallins. Gene, 1993, 136, 145-156.	2.2	15
104	Ethylnitrosourea-Induced Mutation in Mice Leads to the Expression of a Novel Protein in the Eye and to Dominant Cataracts. Genetics, 2001, 157, 1313-1320.	2.9	15
105	Catalase and superoxide dismutase activities in lenses of cataractous NOP-mice. Experimental Eye Research, 1985, 41, 577-579.	2.6	14
106	A New <i>Fgf10</i> Mutation in the Mouse Leads to Atrophy of the Harderian Gland and Slit-Eye Phenotype in Heterozygotes: A Novel Model for Dry-Eye Disease?. , 2009, 50, 4311.		14
107	Lens density tracking in mice by Scheimpflug imaging. Mammalian Genome, 2013, 24, 295-302.	2.2	14
108	Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. International Journal of Radiation Biology, 2021, 97, 156-169.	1.8	14

#	Article	IF	CITATIONS
109	Crybb2 Mutations Consistently Affect Schizophrenia Endophenotypes in Mice. Molecular Neurobiology, 2019, 56, 4215-4230.	4.0	13
110	Spectral domain - Optical coherence tomography (SD-OCT) as a monitoring tool for alterations in mouse lenses. Experimental Eye Research, 2020, 190, 107871.	2.6	13
111	Mutation in Intron 6 of the Hamster <i>Mitf</i> Gene Leads to Skipping of the Subsequent Exon and Creates a Novel Animal Model for the Human Waardenburg Syndrome Type II. Genetics, 2003, 164, 1035-1041.	2.9	13
112	An In Vivo Doxycycline-Controlled Expression System for Functional Studies of the Retina. , 2003, 44, 755.		12
113	Ethylnitrosourea-Induced Base Pair Substitution Affects Splicing of the Mouse γE-Crystallin Encoding Gene Leading to the Expression of a Hybrid Protein and to a Cataract. Genetics, 2002, 161, 1633-1640.	2.9	12
114	Cataract Mutations as a Tool for Developmental Geneticists. Ophthalmic Research, 1996, 28, 8-18.	1.9	11
115	Effects of UV-B Radiation on a Hereditary Suture Cataract in Mice. Experimental Eye Research, 1997, 64, 405-411.	2.6	11
116	Further Genetic Heterogeneity for Autosomal Dominant Human Sutural Cataracts. Ophthalmic Research, 2003, 35, 71-77.	1.9	11
117	On the use of Tono-Pen XL for the measurement of intraocular pressure in mice. Experimental Eye Research, 2005, 80, 295-296.	2.6	11
118	Fgf9 Y162C Mutation Alters Information Processing and Social Memory in Mice. Molecular Neurobiology, 2018, 55, 4580-4595.	4.0	11
119	Mutation in <i>Bmpr1b</i> Leads to Optic Disc Coloboma and Ventral Retinal Gliosis in Mice. , 2020, 61, 44.		11
120	The GJA8 allele encoding CX50I247M is a rare polymorphism, not a cataract-causing mutation. Molecular Vision, 2009, 15, 1881-5.	1.1	11
121	Osmotic state of lenses in three dominant murine cataract mutants. Graefe's Archive for Clinical and Experimental Ophthalmology, 1990, 228, 252-254.	1.9	10
122	Application of WES towards Molecular Investigation of Congenital Cataracts: Identification of Novel Alleles and Genes in a Hospital-Based Cohort of South India. International Journal of Molecular Sciences, 2020, 21, 9569.	4.1	10
123	Oxidative Stress and Inherited Cataracts in Mice. Ophthalmic Research, 1989, 21, 414-419.	1.9	9
124	The Pathologic Effect of a Novel Neomorphic Fgf9Y162C Allele Is Restricted to Decreased Vision and Retarded Lens Growth. PLoS ONE, 2011, 6, e23678.	2.5	9
125	The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations. G3: Genes, Genomes, Genetics, 2016, 6, 4035-4046.	1.8	9
126	Altered Na,K-ATPase pattern in gamma-crystallin mutant mice. Investigative Ophthalmology and Visual Science, 2002, 43, 1517-9.	3.3	9

#	Article	IF	CITATIONS
127	Characterization of ex vivo cultured neuronal- and glial- like cells from human idiopathic epiretinal membranes. BMC Ophthalmology, 2014, 14, 165.	1.4	8
128	Crygf(Rop): the first mutation in the Crygf gene causing a unique radial lens opacity. Investigative Ophthalmology and Visual Science, 2002, 43, 2998-3002.	3.3	8
129	Purification and characterization of a gamma crystallin from mouse lenses. Current Eye Research, 1984, 3, 723-728.	1.5	7
130	DNase activity in murine lenses: Implications for cataractogenesis. Graefe's Archive for Clinical and Experimental Ophthalmology, 1993, 231, 354-358.	1.9	7
131	Allelic loss of chromosomes 8 and 19 in MENXâ€associated rat pheochromocytoma. International Journal of Cancer, 2010, 126, 2362-2372.	5.1	7
132	Crybb2 associates with Tmsb4X and is crucial for dendrite morphogenesis. Biochemical and Biophysical Research Communications, 2018, 503, 123-130.	2.1	7
133	Microphakia and congenital cataract formation in a novel Lim2(C51R) mutant mouse. Molecular Vision, 2011, 17, 1164-71.	1.1	7
134	On the Nature of Murine Radiation-Induced Subcapsular Cataracts: Optical Coherence Tomography-Based Fine Classification, In Vivo Dynamics and Impact on Visual Acuity. Radiation Research, 2021, 197, .	1.5	7
135	The Cryner Element in the Murine γ-Crystallin Promoters Interacts with Lens Proteins. Ophthalmic Research, 1997, 29, 161-171.	1.9	6
136	Standardized, systemic phenotypic analysis of Slc12a1 I299F mutant mice. Journal of Biomedical Science, 2014, 21, 68.	7.0	6
137	Novel small-eye allele in paired box gene 6 (Pax6) is caused by a point mutation in intron 7 and creates a new exon. Molecular Vision, 2013, 19, 877-84.	1.1	6
138	Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. International Journal of Radiation Biology, 2021, 97, 529-540.	1.8	5
139	Mutation in the mouse histone gene Hist2h3c1 leads to degeneration of the lens vesicle and severe microphthalmia. Experimental Eye Research, 2019, 188, 107632.	2.6	4
140	Sequence analysis of the βB2-crystallin cDNA of hamster containing a domain conserved among vertebrates. Gene, 1996, 174, 181-184.	2.2	3
141	A new cat reporter gene vector designed for rapid and efficient cloning of PCR products. Gene, 1996, 177, 99-102.	2.2	3
142	Detection of a point mutation (A to G) in exon 5 of the murine Mgf gene defines a novel allele at the Steel locus with a weak phenotype. Mutation Research - Mutation Research Genomics, 1997, 382, 75-78.	1.1	3
143	A novel CRYGC E128* mutation underlying an autosomal dominant nuclear cataract in a south Indian kindred. Ophthalmic Genetics, 2020, 41, 556-562.	1.2	3
144	Polymorphisms in CRYBB2 encoding $\hat{1}^2$ B2-crystallin are associated with antisaccade performance and memory function. Translational Psychiatry, 2020, 10, 113.	4.8	3

#	Article	IF	CITATIONS
145	Ionising radiation causes vision impairment in neonatal B6C3F1 mice. Experimental Eye Research, 2021, 204, 108432.	2.6	3
146	Eye Disorders. , 0, , 283-309.		2
147	Mouse Genetics and Metabolic Mouse Phenotyping. , 2012, , 85-106.		1
148	Complex Long-term Effects of Radiation on Adult Mouse Behavior. Radiation Research, 2021, 197, .	1.5	1
149	Der Januskopf der genetischen Diagnostik. BioSpektrum, 2011, 17, 727-727.	0.0	0
150	Genetic models for cataracts. Drug Discovery Today: Disease Models, 2013, 10, e189-e194.	1.2	0
151	Ausrottung der Anopheles-Mücken durch CRISPR-Cas9?. BioSpektrum, 2018, 24, 712-716.	0.0	0
152	Genetik menschlicher Erkrankungen. , 2015, , 595-666.		0
153	Formalgenetik. , 2015, , 459-523.		0
154	Genetik und Anthropologie. , 2015, , 737-790.		0
155	Entwicklungsgenetik. , 2015, , 525-594.		0
156	Genetik menschlicher Erkrankungen. , 2020, , 725-812.		0
157	Formalgenetik. , 2020, , 569-642.		0
158	Genetik und Anthropologie. , 2020, , 897-962.		0
159	Entwicklungsgenetik. , 2020, , 643-724.		0