
Jean-Pierre Changeux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322731/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 1965, 12, 88-118.	4.2	8,467
2	Allosteric proteins and cellular control systems. Journal of Molecular Biology, 1963, 6, 306-329.	4.2	2,093
3	Experimental and Theoretical Approaches to Conscious Processing. Neuron, 2011, 70, 200-227.	8.1	1,768
4	Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 2006, 10, 204-211.	7.8	1,649
5	Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 1976, 264, 705-712.	27.8	1,559
6	Acetylcholine receptors containing the \hat{I}^22 subunit are involved in the reinforcing properties of nicotine. Nature, 1998, 391, 173-177.	27.8	1,239
7	Nicotinic Receptors at the Amino Acid Level. Annual Review of Pharmacology and Toxicology, 2000, 40, 431-458.	9.4	757
8	A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8520-8525.	7.1	735
9	Development of Elementary Numerical Abilities: A Neuronal Model. Journal of Cognitive Neuroscience, 1993, 5, 390-407.	2.3	720
10	Allosteric Mechanisms of Signal Transduction. Science, 2005, 308, 1424-1428.	12.6	663
11	X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature, 2009, 457, 111-114.	27.8	644
12	Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei. Journal of Neuroscience, 2001, 21, 1452-1463.	3.6	626
13	Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature, 1995, 374, 65-67.	27.8	612
14	Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nature Reviews Drug Discovery, 2009, 8, 733-750.	46.4	591
15	Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature, 1999, 398, 805-810.	27.8	514
16	Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron, 2020, 105, 776-798.	8.1	487
17	A Neuronal Model of Predictive Coding Accounting for the Mismatch Negativity. Journal of Neuroscience, 2012, 32, 3665-3678.	3.6	476
18	Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice. Journal of Neuroscience, 2003, 23, 7820-7829.	3.6	473

#	Article	IF	CITATIONS
19	Allosteric Receptors after 30 Years. Neuron, 1998, 21, 959-980.	8.1	424
20	X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature, 2011, 469, 428-431.	27.8	407
21	Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature, 1992, 359, 500-505.	27.8	406
22	Chimaeric nicotinic–serotonergic receptor combines distinct ligand binding and channel specificities. Nature, 1993, 366, 479-483.	27.8	399
23	Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nature Reviews Neuroscience, 2010, 11, 389-401.	10.2	381
24	Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. Journal of Molecular Evolution, 1995, 40, 155-172.	1.8	378
25	Identification of Four Classes of Brain Nicotinic Receptors Using β2 Mutant Mice. Journal of Neuroscience, 1998, 18, 4461-4472.	3.6	372
26	The diversity of subunit composition in nAChRs: Evolutionary origins, physiologic and pharmacologic consequences. Journal of Neurobiology, 2002, 53, 447-456.	3.6	371
27	Calcium influx through nicotinic receptor in rat central neurons: Its relevance to cellular regulation. Neuron, 1992, 8, 135-143.	8.1	370
28	Large-Scale Purification of the Acetylcholine-Receptor Protein in Its Membrane-Bound and Detergent-Extracted Forms from Torpedo marmorata Electric Organ. FEBS Journal, 1977, 80, 215-224.	0.2	368
29	Neuronal Nicotinic Receptor a6 Subunit mRNA is Selectively Concentrated in Catecholaminergic Nuclei of the Rat Brain. European Journal of Neuroscience, 1996, 8, 2428-2439.	2.6	358
30	On the nature of allosteric transitions: Implications of non-exclusive ligand binding. Journal of Molecular Biology, 1966, 21, 265-274.	4.2	334
31	Distribution and Pharmacology of α6-Containing Nicotinic Acetylcholine Receptors Analyzed with Mutant Mice. Journal of Neuroscience, 2002, 22, 1208-1217.	3.6	330
32	Allostery and the Monod-Wyman-Changeux Model After 50 Years. Annual Review of Biophysics, 2012, 41, 103-133.	10.0	329
33	Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neuroscience Letters, 1986, 71, 59-65.	2.1	319
34	lvermectin: A Positive Allosteric Effector of the α7 Neuronal Nicotinic Acetylcholine Receptor. Molecular Pharmacology, 1998, 53, 283-294.	2.3	294
35	Nicotinic receptor function: new perspectives from knockout mice. Trends in Pharmacological Sciences, 2000, 21, 211-217.	8.7	292
36	A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature, 2007, 445, 116-119.	27.8	288

#	Article	IF	CITATIONS
37	Allostery in Its Many Disguises: From Theory to Applications. Structure, 2019, 27, 566-578.	3.3	285
38	Brain nicotinic receptors: structure and regulation, role in learning and reinforcement1Published on the World Wide Web on 24 October 1997.1. Brain Research Reviews, 1998, 26, 198-216.	9.0	280
39	Transsynaptic degeneration â€~en cascade' in the cerebellar cortex of staggerer mutant rice. Brain Research, 1974, 67, 519-526.	2.2	274
40	Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3210-3215.	7.1	263
41	Hierarchical Control of Dopamine Neuron-Firing Patterns by Nicotinic Receptors. Neuron, 2006, 50, 911-921.	8.1	263
42	In Vitro excitation of purified membrane fragments by cholinergic agonists. Journal of Membrane Biology, 1971, 6, 1-23.	2.1	256
43	Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness. PLoS Biology, 2005, 3, e141.	5.6	250
44	Neuronal models of cognitive functions. Cognition, 1989, 33, 63-109.	2.2	247
45	Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell, 2016, 166, 1084-1102.	28.9	246
46	Working memory, response selection, and effortful processing in rats with medial prefrontal lesions Behavioral Neuroscience, 1994, 108, 883-891.	1.2	237
47	Nicotine Upregulates Its Own Receptors through Enhanced Intracellular Maturation. Neuron, 2005, 46, 595-607.	8.1	237
48	Role of Ca ²⁺ lons in Nicotinic Facilitation of GABA Release in Mouse Thalamus. Journal of Neuroscience, 1997, 17, 576-585.	3.6	235
49	Conformational selection or induced fit? 50 years of debate resolved. F1000 Biology Reports, 2011, 3, 19.	4.0	226
50	Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Letters, 1973, 33, 109-113.	2.8	203
51	Structure and Pharmacology of Pentameric Receptor Channels: From Bacteria to Brain. Structure, 2012, 20, 941-956.	3.3	202
52	Neurotransmitter-gated ion channels as unconventional allosteric proteins. Current Opinion in Structural Biology, 1994, 4, 554-565.	5.7	200
53	The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily. Journal of Biological Chemistry, 2012, 287, 40207-40215.	3.4	199
54	The Emergence of Human Consciousness: From Fetal to Neonatal Life. Pediatric Research, 2009, 65, 255-260.	2.3	197

#	Article	IF	CITATIONS
55	A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. , 2020, 343, 33-39.		193
56	Postsynaptic Effects of Crotoxin and of Its Isolated Subunits. FEBS Journal, 1979, 99, 471-482.	0.2	192
57	Consequences of tenotomy on the evolution of multiineervation in developing rat soleus muscle. Brain Research, 1975, 99, 354-358.	2.2	189
58	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	16.0	189
59	Denervation increases a neurite-promoting activity in extracts of skeletal muscle. Nature, 1983, 302, 609-611.	27.8	187
60	Targeting Transcription to the Neuromuscular Synapse. Neuron, 2001, 31, 15-22.	8.1	184
61	The β2 but not α7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology, 2006, 184, 339-344.	3.1	184
62	Abnormal Functional Organization in the Dorsal Lateral Geniculate Nucleus of Mice Lacking the β2 Subunit of the Nicotinic Acetylcholine Receptor. Neuron, 2003, 40, 1161-1172.	8.1	181
63	Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Letters, 1972, 28, 96-100.	2.8	180
64	Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron, 1992, 8, 937-945.	8.1	180
65	Normal Mode Analysis Suggests a Quaternary Twist Model for the Nicotinic Receptor Gating Mechanism. Biophysical Journal, 2005, 88, 3954-3965.	0.5	178
66	Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 966-971.	7.1	175
67	The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis. Quarterly Reviews of Biophysics, 1992, 25, 395-432.	5.7	172
68	Allosteric modulations of the nicotinic acetylcholine receptor. Trends in Neurosciences, 1993, 16, 181-186.	8.6	172
69	Fast Kinetic Studies on the Interaction of a Fluorescent Agonist with the Membrane-Bound Acetylcholine Receptor from Torpedo marmorata. FEBS Journal, 1979, 94, 255-279.	0.2	171
70	One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6275-6280.	7.1	159
71	Mutational Analysis of the Charge Selectivity Filter of the α7 Nicotinic Acetylcholine Receptor. Neuron, 1999, 22, 831-843.	8.1	158
72	Nicotinic receptors in wonderland. Trends in Biochemical Sciences, 2001, 26, 459-463.	7.5	158

5

#	Article	IF	CITATIONS
73	Executive and social behaviors under nicotinic receptor regulation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9596-9601.	7.1	157
74	Purification fromTorpedo marmorataelectric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Letters, 1972, 26, 43-47.	2.8	154
75	A Simple Model of Prefrontal Cortex Function in Delayed-Response Tasks. Journal of Cognitive Neuroscience, 1989, 1, 244-261.	2.3	152
76	Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by siteâ€directed mutagenesis. FEBS Letters, 1991, 294, 198-202.	2.8	147
77	Allosteric Interactions in Aspartate Transcarbamylase. III. Interpretation of Experimental Data in Terms of the Model of Monod, Wyman, and Changeux. Biochemistry, 1968, 7, 553-560.	2.5	146
78	Distinct contributions of nicotinic acetylcholine receptor subunit α4 and subunit α6 to the reinforcing effects of nicotine. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7577-7582.	7.1	146
79	Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. Journal of Neurochemistry, 2008, 76, 258-268.	3.9	143
80	Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine, 2017, 23, 347-354.	30.7	142
81	Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. European Journal of Neuroscience, 2000, 12, 3664-3674.	2.6	139
82	The TiPS lecture the nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends in Pharmacological Sciences, 1990, 11, 485-492.	8.7	137
83	50 years of allosteric interactions: the twists and turns of the models. Nature Reviews Molecular Cell Biology, 2013, 14, 819-829.	37.0	137
84	Identification of a New Component of the Agonist Binding Site of the Nicotinic α7 Homooligomeric Receptor. Journal of Biological Chemistry, 1995, 270, 11749-11752.	3.4	133
85	Membrane excitability and dissipative instabilities. Journal of Membrane Biology, 1970, 2, 351-374.	2.1	132
86	Activity-dependent regulation of gene expression in muscle and neuronal cells. Molecular Neurobiology, 1989, 3, 1-53.	4.0	132
87	In vitro phosphorylation of the acetylcholine receptor. Nature, 1977, 267, 540-542.	27.8	130
88	From The Cover: Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3817-3821.	7.1	129
89	A gating mechanism of pentameric ligand-gated ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3987-96.	7.1	129
90	Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Research, 1976, 103, 291-312.	2.2	125

#	Article	IF	CITATIONS
91	Rapsyn Escorts the Nicotinic Acetylcholine Receptor Along the Exocytic Pathway via Association with Lipid Rafts. Journal of Neuroscience, 2002, 22, 8891-8901.	3.6	125
92	A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biological Cybernetics, 1996, 75, 361-379.	1.3	124
93	Regulation of muscle acetylcoline receptor synthesis in vitro by cyclic nucleotide derivatives. Nature, 1979, 278, 749-752.	27.8	123
94	Multiple innervation of purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. Journal of Neurobiology, 1980, 11, 41-50.	3.6	123
95	Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. Journal of Leukocyte Biology, 2007, 81, 599-606.	3.3	123
96	Experimentally based model of a complex between a snake toxin and the Â7 nicotinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3216-3221.	7.1	121
97	Transmembrane Orientation of Proteins Present in Acetylcholine Receptor-Rich Membranes from Torpedo marmorata Studied by Selective Proteolysis. FEBS Journal, 1980, 106, 381-393.	0.2	119
98	Molecular Determinants by Which a Long Chain Toxin from Snake Venom Interacts with the Neuronal α7-Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2000, 275, 29594-29601.	3.4	119
99	Introducing the Human Brain Project. Procedia Computer Science, 2011, 7, 39-42.	2.0	118
100	Conditions for the selective labelling of the 66 000 dalton chain of the acetylcholine receptor by the covalent non-competitive blocker 5-azido-[3 H]trimethisoquin. FEBS Letters, 1980, 116, 30-36.	2.8	114
101	Immunological characterisation of the cholinergic receptor protein from Electrophorus electricus. FEBS Letters, 1973, 35, 124-128.	2.8	113
102	The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & amp; allosteric modulation. Neuropharmacology, 2015, 96, 137-149.	4.1	113
103	Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Journal of Molecular Biology, 1976, 106, 497-516.	4.2	112
104	Altered Map of Visual Space in the Superior Colliculus of Mice Lacking Early Retinal Waves. Journal of Neuroscience, 2005, 25, 6921-6928.	3.6	110
105	Â2-Containing Nicotinic Receptors Contribute to the Organization of Sleep and Regulate Putative Micro-Arousals in Mice. Journal of Neuroscience, 2004, 24, 5711-5718.	3.6	109
106	Interaction of the Acetylcholine (Nicotinic) Receptor Protein from Torpedo marmorata Electric Organ with Monolayers of Pure Lipids. FEBS Journal, 1978, 85, 27-42.	0.2	106
107	Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18207-18212.	7.1	106
108	Allosteric Receptors: From Electric Organ to Cognition. Annual Review of Pharmacology and Toxicology, 2010, 50, 1-38.	9.4	106

#	Article	IF	CITATIONS
109	Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in αCGRP-deficient mice. Nature Neuroscience, 2001, 4, 357-358.	14.8	105
110	Consequences of blocking the nerve with a local anaesthetic on the evolution of multiinnervation at the regenerating neuromuscular junction of the rat. Brain Research, 1978, 149, 89-96.	2.2	104
111	A neurocomputational hypothesis for nicotine addiction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1106-1111.	7.1	104
112	Nicotinic receptors, allosteric proteins and medicine. Trends in Molecular Medicine, 2008, 14, 93-102.	6.7	104
113	Ultrastructural Localization of the α4-Subunit of the Neuronal Acetylcholine Nicotinic Receptor in the Rat Substantia Nigra. Journal of Neuroscience, 1999, 19, 6475-6487.	3.6	103
114	Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Current Opinion in Neurobiology, 2001, 11, 369-377.	4.2	103
115	Nicotine activates immature "silent" connections in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2059-2064.	7.1	103
116	Biochemical and Immunological Studies on the P ₄₀₀ Protein, a Protein Characteristic of the Purkinje Cell from Mouse and Rat Cerebellum. Developmental Neuroscience, 1979, 2, 254-275.	2.0	101
117	On Some Structural Analogies between Acetylcholinesterase and the Macromolecular Receptor of Acetylcholine. Journal of General Physiology, 1969, 54, 225-244.	1.9	100
118	The noncompetitive blocker [3 H]chlorpromazine labels segment M2 but not segment M 1 of the nicotinic acetylcholine receptor α-subunit. FEBS Letters, 1989, 253, 190-198.	2.8	100
119	Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Journal of Molecular Biology, 1976, 106, 469-483.	4.2	99
120	Fast Kinetic Studies on the Allosteric Interactions between Acetylcholine Receptor and Local Anesthetic Binding Sites. FEBS Journal, 1979, 94, 281-296.	0.2	99
121	Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9822-9826.	7.1	99
122	Improved Secondary Structure Predictions for a Nicotinic Receptor Subunit: Incorporation of Solvent Accessibility and Experimental Data into a Two-Dimensional Representation. Biophysical Journal, 1999, 76, 2329-2345.	0.5	98
123	Critical Elements Determining Diversity in Agonist Binding and Desensitization of Neuronal Nicotinic Acetylcholine Receptors. Journal of Neuroscience, 1998, 18, 648-657.	3.6	97
124	Tritium labelling of the α-neurotoxin of Naja nigricollis. FEBS Letters, 1971, 17, 333-335.	2.8	95
125	Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Journal of Molecular Biology, 1976, 106, 485-496.	4.2	95
126	Reward-dependent learning in neuronal networks for planning and decision making. Progress in Brain Research, 2000, 126, 217-229.	1.4	95

#	Article	IF	CITATIONS
127	Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuries. FASEB Journal, 2002, 16, 423-425.	0.5	94
128	Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedomarmorata in the millisecond time range: Resolution of an "intermediate―conformational transition and evidence for positive cooperative effects. Biochemical and Biophysical Research Communications, 1980, 97, 889-896.	2.1	93
129	The ligand gated ion channel database. Nucleic Acids Research, 1999, 27, 340-342.	14.5	93
130	Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. European Journal of Neuroscience, 2000, 12, 2475-2485.	2.6	93
131	Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11567-11572.	7.1	93
132	Prefrontal nicotinic receptors control novel social interaction between mice. FASEB Journal, 2011, 25, 2145-2155.	0.5	93
133	The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel. Trends in Pharmacological Sciences, 1987, 8, 459-465.	8.7	92
134	Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8155-8160.	7.1	92
135	Identification of an Element Crucial for the Sub-synaptic Expression of the Acetylcholine Receptor ε-Subunit Gene. Journal of Biological Chemistry, 1996, 271, 17433-17438.	3.4	91
136	Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]α-bungarotoxin binding sites in the brain ofMacaca mulatta. Journal of Comparative Neurology, 2003, 461, 49-60.	1.6	91
137	Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16965-16970.	7.1	91
138	Compartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature, 1990, 344, 673-675.	27.8	88
139	Interconversion between Different States of Affinity for Acetylcholine of the Cholinergic Receptor Protein from Torpedo marmorata. FEBS Journal, 1975, 55, 505-515.	0.2	85
140	Phosphorylation in vitro of Membrane Fragments from Torpedo marmorata Electric Organ. Effect on Membrane Solubilization by Detergents. FEBS Journal, 1980, 105, 51-62.	0.2	85
141	Localization of the cholinergic receptor protein inElectrophoruselectroplax by high resolution autoradiography. FEBS Letters, 1972, 25, 127-133.	2.8	83
142	Stratification of the channel domain in neurotransmitter receptors. Current Opinion in Cell Biology, 1993, 5, 688-693.	5.4	83
143	Reconstitution of a functional acetylcholine regulator under defined conditions. FEBS Letters, 1979, 105, 181-187.	2.8	82
144	Â2 nicotinic acetylcholine receptor subunit modulates protective responses to stress: A receptor basis for sleep-disordered breathing after nicotine exposure. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13272-13277.	7.1	80

#	Article	IF	CITATIONS
145	Monoamine Oxidase Inhibitors Allow Locomotor and Rewarding Responses to Nicotine. Neuropsychopharmacology, 2006, 31, 1704-1713.	5.4	80
146	Influence of innervation of myogenic factors and acetylcholine receptor α-subunit mRNAs. NeuroReport, 1991, 2, 25-28.	1.2	79
147	Involvement of α6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. NeuroReport, 1999, 10, 2497-2501.	1.2	78
148	Control of neurulation by the nucleosome assembly protein-1–like 2. Nature Genetics, 2000, 25, 431-435.	21.4	78
149	Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: Dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology, 2006, 50, 1030-1040.	4.1	78
150	A Study on the Motion Of Protenis in Excitable Membrane Fragment by Nanosecond Fluorescence Polarization Spectroscopy. FEBS Journal, 1971, 18, 332-341.	0.2	77
151	Chemical Signaling in the Brain. Scientific American, 1993, 269, 58-62.	1.0	77
152	Crosslinking of α-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation. FEBS Letters, 1982, 139, 225-229.	2.8	76
153	Nicotinic receptor: an allosteric protein specialized for intercellular communication. Seminars in Neuroscience, 1995, 7, 75-90.	2.2	76
154	Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Reports, 2006, 7, 1154-1161.	4.5	76
155	Reconstitution of a Functional Acetylcholine Receptor. Conservation of the Conformational and Allosteric Transitions and Recovery of the Permeability Response; Role of Lipids. FEBS Journal, 1980, 110, 35-55.	0.2	75
156	Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor. FASEB Journal, 2000, 14, 543-554.	0.5	75
157	α7 Nicotinic Acetylcholine Receptor Regulates Airway Epithelium Differentiation by Controlling Basal Cell Proliferation. American Journal of Pathology, 2009, 175, 1868-1882.	3.8	75
158	Fast Kinetic Studies on the Interaction of Cholinergic Agonists with the Membrane-Bound Acetylcholine Receptor from Torpedo marmorata as Revealed by Quinacrine Fluorescence. FEBS Journal, 1977, 80, 225-242.	0.2	73
159	An Extracellular Protein Microdomain Controls Up-regulation of Neuronal Nicotinic Acetylcholine Receptors by Nicotine. Journal of Biological Chemistry, 2004, 279, 18767-18775.	3.4	73
160	Towards a cognitive neuroscience of self-awareness. Neuroscience and Biobehavioral Reviews, 2017, 83, 765-773.	6.1	73
161	Functional Nicotinic Acetylcholine Receptors Are Expressed in B Lymphocyte-Derived Cell Lines. Molecular Pharmacology, 2003, 64, 885-889.	2.3	72
162	Interplay of β2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15991-15996.	7.1	71

#	Article	IF	CITATIONS
163	The concept of allosteric modulation: an overview. Drug Discovery Today: Technologies, 2013, 10, e223-e228.	4.0	69
164	Developmental Regulation of Acetylcholinesterase Transcripts in the Mouse Diaphragm: Alternative Splicing and Focalization. European Journal of Neuroscience, 1995, 7, 1803-1809.	2.6	68
165	Heterogeneity and Selective Targeting of Neuronal Nicotinic Acetylcholine Receptor (nAChR) Subtypes Expressed on Retinal Afferents of the Superior Colliculus and Lateral Geniculate Nucleus: Identification of a New Native nAChR Subtype α3β2(α5 or β3) Enriched in Retinocollicular Afferents. Molecular Pharmacology, 2005, 68, 1162-1171.	2.3	68
166	Art and Neuroscience. Leonardo, 1994, 27, 189.	0.3	67
167	50th anniversary of the word "allosteric― Protein Science, 2011, 20, 1119-1124.	7.6	67
168	Paradoxical allosteric effects of competitive inhibitors on neuronal α7 nicotinic receptor mutants. NeuroReport, 1997, 8, 3591-3596.	1.2	66
169	Pore conformations and gating mechanism of a Cys-loop receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15877-15882.	7.1	66
170	The natural axis of transmitter receptor distribution in the human cerebral cortex. Proceedings of the United States of America, 2021, 118, .	7.1	66
171	Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Letters, 2002, 528, 251-256.	2.8	65
172	In Vitro excitation of purified membrane fragments by cholinergic agonists. Journal of Membrane Biology, 1971, 6, 24-57.	2.1	63
173	Factors regulating the susceptibility of the acetylcholine receptor protein to heat inactivation. FEBS Letters, 1979, 108, 489-494.	2.8	63
174	The nicotinic acetylcholine receptor: a typical â€~allosteric machine'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170174.	4.0	63
175	The amino-terminal sequence of the 40 000 molecular weight subunit of the acetylcholine receptor protein fromTorpedo marmorata. FEBS Letters, 1979, 104, 99-105.	2.8	61
176	LGICdb: the ligand-gated ion channel database. Nucleic Acids Research, 2001, 29, 294-295.	14.5	61
177	Reconstitution of a Functional Acetylcholine Receptor. Polypeptide Chains, Ultrastructure, and Binding Sites for Acetylcholine and Local Anesthetics. FEBS Journal, 1980, 110, 13-33.	0.2	60
178	Intracellular complexes of the 2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20570-20575.	7.1	60
179	The acetylcholine receptor molecule: allosteric sites and the ion channel. Trends in Neurosciences, 1987, 10, 245-250.	8.6	59
180	The role of nicotinic acetylcholine receptors in lymphocyte development. Journal of Neuroimmunology, 2006, 171, 86-98.	2.3	59

#	Article	IF	CITATIONS
181	The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Science Translational Medicine, 2015, 7, 287ra72.	12.4	59
182	Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Journal of Molecular Biology, 1976, 106, 517-535.	4.2	58
183	Allosteric Transitions of the Acetylcholine Receptor. Advances in Protein Chemistry, 1998, 51, 121-184.	4.4	57
184	Modulation of morphine analgesia in αCGRP mutant mice. NeuroReport, 1999, 10, 849-854.	1.2	57
185	In vitro interaction of 1-anilino 8-naphtalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. Biochemical and Biophysical Research Communications, 1969, 36, 420-427.	2.1	56
186	An H-bond between two residues from different loops of the acetylcholine binding site contributes to the activation mechanism of nicotinic receptors. EMBO Journal, 2003, 22, 1990-2003.	7.8	54
187	Nicotinic modulation of network and synaptic transmission in the immature hippocampus investigated with genetically modified mice. Journal of Physiology, 2006, 576, 533-546.	2.9	53
188	Effects associated with Permeability Changes caused by Gramicidin A in Electroplax Membrane. Nature, 1969, 221, 541-545.	27.8	52
189	Recovery of Some Functional Properties of the Detergent-Extracted Cholinergic Receptor Protein from Torpedo marmorata after Reintegration into a Membrane Environment. FEBS Journal, 1978, 84, 429-439.	0.2	52
190	Calcitonin Gene?Related Peptides and Neuromuscular Interactions. Annals of the New York Academy of Sciences, 1992, 657, 361-378.	3.8	51
191	Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Journal of Molecular Biology, 1976, 106, 457-467.	4.2	50
192	Evidence for protein phosphorylation and dephosphorylation in membrane fragments isolated from the electric organ ofElectrophorus electricus. FEBS Letters, 1977, 74, 71-76.	2.8	50
193	Analysis of the cellular expression pattern of βâ€CGRP in αâ€CGRPâ€deficient mice. Journal of Comparative Neurology, 2004, 476, 32-43.	1.6	50
194	Climbing Brain Levels of Organisation from Genes to Consciousness. Trends in Cognitive Sciences, 2017, 21, 168-181.	7.8	50
195	Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmorata. Journal of Molecular Biology, 1984, 176, 205-237.	4.2	49
196	Immunoreactive Calcitonin Gene-Related Peptide, Vasoactive Intestinal Polypeptide, and Somatostatin in Developing Chicken Spinal Cord Motoneurons. Distribution and role in regulation of cAMP in cultured muscle cells. European Journal of Neuroscience, 1989, 1, 269-287.	2.6	49
197	Alpha7-nicotinic receptors modulate nicotine-induced reinforcement and extracellular dopamine outflow in the mesolimbic system in mice. Psychopharmacology, 2012, 220, 1-14.	3.1	49
198	Selective stabilization of muscle innervation during development: A mathematical model. Biological Cybernetics, 1983, 46, 207-215.	1.3	48

#	Article	IF	CITATIONS
199	Neurite-promoting activities for embryonic spinal neurons and their developmental changes in the chick. Developmental Biology, 1984, 104, 336-347.	2.0	48
200	Reconstitution of a Functional Acetylcholine Receptor. FEBS Journal, 1981, 118, 203-214.	0.2	48
201	Comparison between the affinities for reversible cholinergic ligands of a purified and membrane bound state of the acetylcholine-receptor protein fromElectrophorus electricus. FEBS Letters, 1973, 32, 143-148.	2.8	47
202	Morphological and biochemical studies on isolated molecular and granular layers from bovine cerebellum. Brain Research, 1978, 142, 487-504.	2.2	47
203	Existence and coexistence of calcitonin gene-related peptide, vasoactive intestinal polypeptide- and somatostatin-like immunoreactivities in spinal cord motoneurons of developing embryos and post-hatch chicks. Neuroscience Letters, 1988, 86, 114-118.	2.1	47
204	αCGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18345-18350.	7.1	47
205	A Connectomic Hypothesis for the Hominization of the Brain. Cerebral Cortex, 2021, 31, 2425-2449.	2.9	47
206	A simple molecular model of neurulation. BioEssays, 1998, 20, 758-770.	2.5	45
207	Synthesis of fluorescentacyl-cholines with agonistic properties: pharmacological activity onElectrophoruselectroplaque and interaction in vitro withTorpedoreceptor-rich membrane fragments. FEBS Letters, 1976, 67, 335-342.	2.8	44
208	Genetic and â€~Epigenetic' Factors Regulating Synapse Formation in Vertebrate Cerebellum and Neuromuscular Junction. Progress in Brain Research, 1978, 48, 43-66.	1.4	44
209	Changes in extrinsic fluorescence intensity of the electroplax membrane during electrical excitation. Journal of Membrane Biology, 1971, 5, 102-120.	2.1	43
210	Selective labelling by [3 H]trimethisoquin azide of polypeptide chains present in acetylcholine receptor-rich membranes from Torpedo marmorata. FEBS Letters, 1980, 111, 29-34.	2.8	42
211	Post-transcriptional Compartmentalization of Acetylcholine Receptor Biosynthesis in the Subneural Domain of Muscle and Electrocyte Junctions. European Journal of Neuroscience, 1993, 5, 191-202.	2.6	42
212	A photoaffinity ligand of the acetylcholine-binding site predominantly labels the region 179-207 of the α-subunit on native acetylcholine receptor fromTorpedo marmorata. FEBS Letters, 1986, 207, 243-249.	2.8	41
213	Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes, Obesity and Metabolism, 2017, 19, 4-21.	4.4	41
214	Localization of Acetylcholinesterase by Immunofluorescence in Eel Electroplax. Nature, 1970, 225, 1149-1150.	27.8	39
215	Effects of the type A toxin fromClostridium botulinum on the development of skeletal muscles and of their innervation in chick embryo. Brain Research, 1975, 83, 107-121.	2.2	39
216	Negative regulatory elements upstream of a novel exon of the neuronal nicotinic acetylcholine receptor α2 subunit gene. Nucleic Acids Research, 1993, 21, 2185-2192.	14.5	39

#	Article	IF	CITATIONS
217	Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system. Progress in Brain Research, 2004, 145, 233-251.	1.4	39
218	14-3-3 Â associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18189-18194.	7.1	38
219	Attenuation of clinical and immunological outcomes during SARS oVâ€2 infection byÂivermectin. EMBO Molecular Medicine, 2021, 13, e14122.	6.9	38
220	Isolation and Purification of the Nicotinic Acetylcholine Receptor and Its Functional Reconstitution into a Membrane Environment. International Review of Neurobiology, 1977, 20, 31-63.	2.0	37
221	Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Reports, 2002, 3, 1075-1081.	4.5	37
222	Altered paralimbic interaction in behavioral addiction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4744-4749.	7.1	37
223	Purification of membrane fragments derived from the non excitable surface of the eel electroplax. FEBS Letters, 1970, 8, 145-148.	2.8	35
224	Long-Term Exposure to Nicotine Modulates the Level and Activity of Acetylcholine Receptors in White Blood Cells of Smokers and Model Mice. Molecular Pharmacology, 2004, 66, 1712-1718.	2.3	35
225	Behavioral Sequence Analysis Reveals a Novel Role for ß2* Nicotinic Receptors in Exploration. PLoS Computational Biology, 2008, 4, e1000229.	3.2	35
226	A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels. Comptes Rendus - Biologies, 2005, 328, 223-234.	0.2	34
227	Inhibition of both α7* and β2* nicotinic acetylcholine receptors is necessary to prevent development of sensitization to cocaine-elicited increases in extracellular dopamine levels in the ventral striatum. Psychopharmacology, 2006, 187, 181-188.	3.1	34
228	Some structural properties of excitable membranes labelled by fluorescent probes. FEBS Letters, 1970, 7, 13-19.	2.8	33
229	Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11309-11314.	7.1	33
230	A versatile system for the neuronal subtype specific expression of lentiviral vectors. FASEB Journal, 2010, 24, 723-730.	0.5	33
231	A protein difference associated with defects of the purkinje cell in staggerer and nervous mutant mice. FEBS Letters, 1975, 52, 216-220.	2.8	32
232	Biosynthesis of riboflavin. FEBS Journal, 2002, 269, 519-526.	0.2	32
233	Object memory in young and aged mice after sevoflurane anaesthesia. NeuroReport, 2009, 20, 1419-1423.	1.2	32
234	Do Nicotinic Receptors Modulate High-Order Cognitive Processing?. Trends in Neurosciences, 2020, 43, 550-564.	8.6	32

#	Article	IF	CITATIONS
235	Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics. PLoS Computational Biology, 2017, 13, e1005784.	3.2	32
236	Stability of multiple innervation of Purkinje cells by climbing fibers in the agranular cerebellum of old rats X-irradiated at birth. Developmental Brain Research, 1984, 14, 310-313.	1.7	31
237	How well can molecular modelling predict the crystal structure: the case of the ligand-binding domain of glutamate receptors. Trends in Pharmacological Sciences, 2000, 21, 87-92.	8.7	31
238	Allosteric regulation of pentameric ligand-gated ion channels: An emerging mechanistic perspective. Channels, 2014, 8, 350-360.	2.8	31
239	Basic Consciousness of the Newborn. Seminars in Perinatology, 2010, 34, 201-206.	2.5	30
240	Discovery of the First Neurotransmitter Receptor: The Acetylcholine Nicotinic Receptor. Biomolecules, 2020, 10, 547.	4.0	30
241	Presence of two forms of acetylcholine receptor with different isoelectric points in the electric organ ofElectrophorus electricusand their catalytic interconversionin vitro. FEBS Letters, 1976, 67, 264-268.	2.8	29
242	Evidence for degradation of the acetylcholine (nicotinic) receptor in skeletal muscle during the development of the chick embryo. FEBS Letters, 1977, 77, 219-224.	2.8	29
243	Chapter 26 Coexistence of neuronal messengers and molecular selection. Progress in Brain Research, 1986, 68, 373-403.	1.4	29
244	The Neuronal Nicotinic Acetylcholine Receptor α2 Subunit Gene Promoter Is Activated by the Brn-3b POU Family Transcription Factor and Not by Brn-3a or Brn-3c. Journal of Biological Chemistry, 1995, 270, 15143-15147.	3.4	29
245	Single Binding Versus Single Channel Recordings: A New Approach to Study Ionotropic Receptorsâ€. Biochemistry, 1997, 36, 13755-13760.	2.5	29
246	New mutants to explore nicotinic receptor functions. Trends in Pharmacological Sciences, 1992, 13, 299-301.	8.7	28
247	Rational Understanding of Nicotinic Receptors Drug Binding. Current Topics in Medicinal Chemistry, 2004, 4, 645-651.	2.1	28
248	Nerve-Dependent Plasticity of the Golgi Complex in Skeletal Muscle Fibres: Compartmentalization Within the Subneural Sarcoplasm. European Journal of Neuroscience, 1995, 7, 470-479.	2.6	27
249	Mechanism of Cl- Selection by a Glutamate-gated Chloride (GluCl) Receptor Revealed through Mutations in the Selectivity Filter. Journal of Biological Chemistry, 2006, 281, 14875-14881.	3.4	27
250	Relationships between Structural Dynamics and Functional Kinetics inÂOligomeric Membrane Receptors. Biophysical Journal, 2010, 98, 2045-2052.	0.5	27
251	Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors. Frontiers in Pharmacology, 2016, 7, 178.	3.5	27
252	Nicotinic receptors in mouse prefrontal cortex modulate ultraslow fluctuations related to conscious processing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14823-14828.	7.1	27

#	Article	IF	CITATIONS
253	On the irreversible binding of p -(trimethylammonium) benzenediazonium fluoroborate (TDF) to acetylcholinesterase from electrogenic tissue. FEBS Letters, 1969, 2, 224-226.	2.8	26
254	Ceruleotoxin: a Possible Marker of the Cholinergic Ionophore. FEBS Journal, 1977, 74, 43-51.	0.2	26
255	The Role of beta2-Subunit-Containing Nicotinic Acetylcholine Receptors in the Brain Explored with a Mutant Mouse. Annals of the New York Academy of Sciences, 1999, 868, 611-616.	3.8	26
256	Nicotinic receptors and nicotine addiction. Comptes Rendus - Biologies, 2009, 332, 421-425.	0.2	26
257	Emergent pharmacology of conscious experience: new perspectives in substance addiction. FASEB Journal, 2011, 25, 2098-2108.	0.5	26
258	Immunological studies on the Purkinje cells from rat and mouse cerebella. Developmental Biology, 1979, 72, 320-326.	2.0	25
259	Light and heavy forms of the acetylcholine receptor from Torpedo marmorata electric organ. FEBS Letters, 1980, 121, 327-332.	2.8	25
260	Phorbol esters inhibit the activity of the chicken acetylcholine receptor alpha-subunit gene promoter. Role of myogenic regulators. FEBS Journal, 1991, 202, 813-818.	0.2	25
261	Purification and Characterization of the Cholinergic Receptor Protein in its Membrane-Bound and Detergent-Soluble Forms from the Electric Organ of Torpedo marmorata. Biochemical Society Transactions, 1977, 5, 511-514.	3.4	24
262	Chromosomal localization of the mouse genes coding for α2, α3, α4 and β2 subunits of neuronal nicotinic acetylcholine receptor. FEBS Letters, 1990, 264, 48-52.	2.8	24
263	Compartmentalized Expression of the α- and γ-Subunits of the Acetylcholine Receptor in Recently Fused Myofibers. Developmental Biology, 1993, 157, 205-213.	2.0	24
264	Nicotinic-agonist stimulated 86Rb+ efflux and [3H]epibatidine binding of mice differing in β2 genotype. Neuropharmacology, 2000, 39, 2632-2645.	4.1	24
265	Neurotoxicity of channel mutations in heterologously expressed α7-nicotinic acetylcholine receptors. European Journal of Neuroscience, 2001, 13, 1849-1860.	2.6	24
266	Specific binding of acetylcholine to acetylcholinesterase in the presence of eserine. FEBS Letters, 1968, 2, 77-80.	2.8	23
267	Chemical and Pharmacological Characterization of Toxic Polypeptides from the Venom of Bungarus caeruleus. FEBS Journal, 1977, 74, 31-42.	0.2	23
268	Immunological studies on the Purkinje cells from rat and mouse cerebella. Developmental Biology, 1979, 72, 308-319.	2.0	23
269	Phosphorylation-Elicited Quaternary Changes of GA Binding Protein in Transcriptional Activation. Molecular and Cellular Biology, 2003, 23, 8008-8018.	2.3	23
270	Ceruleotoxin: An acidic neurotoxin from the venom ofBungarus caeruleuswhich blocks the response to a cholinergic agonist without binding to the cholinergic receptor site. FEBS Letters, 1975, 59, 212-216	2.8	22

#	Article	IF	CITATIONS
271	Computational models of association cortex. Current Opinion in Neurobiology, 2000, 10, 250-259.	4.2	22
272	Distinct subcellular targeting of fluorescent nicotinic α3β4 and serotoninergic 5-HT3A receptors in hippocampal neurons. European Journal of Neuroscience, 2004, 19, 855-862.	2.6	22
273	Acquisition and Performance of Delayed-response Tasks: a Neural Network Model. Cerebral Cortex, 2005, 15, 489-506.	2.9	22
274	The Ferrier Lecture 1998 The molecular biology of consciousness investigated with genetically modified mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 2239-2259.	4.0	22
275	Chronic stimulation of the spinal cord in developing chick embryo causes the differentiation of multiple clusters of acetylcholine receptor in the posterior latissimus dorsi muscle. Developmental Biology, 1980, 76, 384-395.	2.0	21
276	Conservation of the kinetic and allosteric properties of the acetylcholine receptor in its Na cholate soluble 9 S form : Effect of lipids. Biochemical and Biophysical Research Communications, 1980, 93, 127-133.	2.1	21
277	Proactive epigenesis and ethical innovation. EMBO Reports, 2016, 17, 1361-1364.	4.5	21
278	The Glycine Receptor Allosteric Ligands Library (GRALL). Bioinformatics, 2020, 36, 3379-3384.	4.1	21
279	In vitro excitation of purified membrane fragments by cholinergic agonists. Journal of Membrane Biology, 1971, 6, 81-88.	2.1	20
280	Roots: Allosteric proteins: From regulatory enzymes to receptors. BioEssays, 1993, 15, 625-634.	2.5	20
281	A non-radioactive ligand-binding assay for detection of cyanobacterial anatoxins using Torpedo electrocyte membranes. Toxicon, 2008, 52, 163-174.	1.6	20
282	The Concept of Allosteric Interaction and Its Consequences for the Chemistry of the Brain. Journal of Biological Chemistry, 2013, 288, 26969-26986.	3.4	20
283	Functional properties of the purified cholinergic receptor protein fromelectrophorus electricus. Brain Research, 1973, 62, 307-315.	2.2	19
284	Protein differences associated with the absence of granule cells in the cerebella from the mutant weaver mouse and from X-irradiated rat. FEBS Letters, 1974, 46, 243-246.	2.8	19
285	Synthesis and pharmacological activity on Electrophorus electricus electroplaque of photoaffinity labelling derivatives of the non-competitive blockers di- and tri-methisoquin. FEBS Letters, 1980, 111, 23-28.	2.8	19
286	Stabilization of the high affinity state of the membrane-bound acetylcholine receptor from Torpedo marmorata by noncompetitive blockers. FEBS Letters, 1981, 131, 239-244.	2.8	19
287	Induction of normal ultrastructure by CGRP treatment in dysgenic myotubes. FEBS Letters, 1990, 263, 147-152.	2.8	19
288	Promoter analysis of the neuronal nicotinic acetylcholine receptor α4gene: methylation and expression of the transgene. European Journal of Neuroscience, 1998, 10, 2244-2253.	2.6	19

#	Article	IF	CITATIONS
289	The Origins of Allostery: From Personal Memories to Material for the Future. Journal of Molecular Biology, 2013, 425, 1396-1406.	4.2	19
290	Biased Allostery. Biophysical Journal, 2016, 111, 902-908.	0.5	19
291	Recovery of allosteric interactions between a fluorescent cholinergic agonist and local anesthetics after removal of the detergent from cholate-solubilized membrane fragments rich in acetylcholine receptor. FEBS Letters, 1978, 94, 397-404.	2.8	18
292	Raman spectroscopy of acetylcholine receptor-rich membranes from Torpedo marmorata and of their isolated components. FEBS Letters, 1983, 164, 393-400.	2.8	18
293	Reduction of withdrawal signs after chronic nicotine exposure of alpha-calcitonin gene-related peptide knock-out mice. Neuroscience Letters, 2004, 360, 73-76.	2.1	18
294	Loss of highâ€affinity nicotinic receptors increases the vulnerability to excitotoxic lesion and decreases the positive effects of an enriched environment. FASEB Journal, 2007, 21, 4028-4037.	0.5	18
295	Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10749-10754.	7.1	18
296	The nicotinic acetylcholine receptor: From molecular biology to cognition. Neuropharmacology, 2015, 96, 135-136.	4.1	18
297	Nonmyogenic Factors Bind Nicotinic Acetylcholine Receptor Promoter Elements Required for Response to Denervation. Journal of Biological Chemistry, 1998, 273, 12786-12793.	3.4	17
298	A natural cortical axis connecting the outside and inside of the human brain. Network Neuroscience, 2022, 6, 950-959.	2.6	17
299	Distribution of macromolecules from the intercellular matrix in the electroplaque of Electrophorus electricus. FEBS Letters, 1980, 120, 259-263.	2.8	16
300	Concluding Remarks: On the "Singularity―of Nerve Cells and its Ontogenesis. Progress in Brain Research, 1983, 58, 465-478.	1.4	16
301	Chronic Nicotine Exposure has Dissociable Behavioural Effects on Control and Beta2â^'/â^' Mice. Behavior Genetics, 2008, 38, 503-514.	2.1	16
302	Sevoflurane Anesthesia Alters Exploratory and Anxiety-like Behavior in Mice Lacking the β2Nicotinic Acetylcholine Receptor Subunit. Anesthesiology, 2008, 109, 790-798.	2.5	16
303	A single (â~')-nicotine injection causes change with a time delay in the affinity of striatal D2 receptors for antagonist, but not for agonist, nor in the D2 receptor mRNA levels in the rat substantia nigra. Brain Research, 1995, 679, 157-167.	2.2	15
304	Transcription in neuromuscular junction formation: Who turns on whom?. Journal of Neurocytology, 2003, 32, 677-684.	1.5	15
305	<i>Functional Organization and Conformational Dynamics of the Nicotinic Receptor</i> . Annals of the New York Academy of Sciences, 2008, 1132, 42-52.	3.8	15
306	Antibodies against Extracellular Domains of alpha4 and alpha7 Subunits Alter the Levels of Nicotinic Receptors in the Mouse Brain and Affect Memory: Possible Relevance to Alzheimer's Pathology. Journal of Alzheimer's Disease, 2011, 24, 693-704.	2.6	15

#	Article	IF	CITATIONS
307	Intermediate closed state for glycine receptor function revealed by cysteine cross-linking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17113-17118.	7.1	15
308	Differential mechanisms underlie trace and delay conditioning in Drosophila. Nature, 2022, 603, 302-308.	27.8	15
309	Docking of α-cobratoxin suggests a basal conformation of the nicotinic receptor. Biochemical and Biophysical Research Communications, 2007, 359, 413-418.	2.1	14
310	Deciding between conflicting motivations: What mice make of their prefrontal cortex. Behavioural Brain Research, 2012, 229, 419-426.	2.2	14
311	Structural Identification of the Nicotinic Receptor Ion Channel. Trends in Neurosciences, 2018, 41, 67-70.	8.6	14
312	Hierarchical neuronal modeling of cognitive functions: from synaptic transmission to the Tower of London. International Journal of Psychophysiology, 2000, 35, 179-187.	1.0	13
313	Evidence for a skeleton in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. FEBS Letters, 1982, 145, 250-257.	2.8	12
314	On allosteric mechanisms and acetylcholine receptors. Trends in Biochemical Sciences, 1994, 19, 399-400.	7.5	12
315	Regional differential effects of chronic nicotine on brain α4-containing and α6-containing receptors. NeuroReport, 2008, 19, 1545-1550.	1.2	12
316	Electrical activity regulates AChR gene expression via JNK, PKCζ and Sp1 in skeletal chick muscle. FEBS Letters, 2001, 487, 333-338.	2.8	11
317	Protein dynamics and the allosteric transitions of pentameric receptor channels. Biophysical Reviews, 2014, 6, 311-321.	3.2	11
318	Drug Addiction: From Neuroscience to Ethics. Frontiers in Psychiatry, 2018, 9, 595.	2.6	11
319	A strategy for designing allosteric modulators of transcription factor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2683-2686.	7.1	11
320	Regional changes in the cholinergic system in mice lacking monoamine oxidase A. Brain Research Bulletin, 2009, 78, 283-289.	3.0	10
321	Nicotinic receptors: From protein allostery to computational neuropharmacology. Molecular Aspects of Medicine, 2021, 84, 101044.	6.4	10
322	The acetylcholine receptor. Trends in Pharmacological Sciences, 1979, 1, 198-202.	8.7	9
323	Occurrence of neuropeptide K-like immunoreactivity in ventral horn cells of the chicken spinal cord during development. Brain Research, 1991, 541, 149-153.	2.2	8
324	Golden Anniversary of the Nicotinic Receptor. Neuron, 2020, 107, 14-16.	8.1	8

#	Article	IF	CITATIONS
325	Ivermectin as a potential treatment for COVID-19?. PLoS Neglected Tropical Diseases, 2021, 15, e0009446.	3.0	8
326	Dynamic Cellular Cartography: Mapping the Local Determinants of Oligodendrocyte Transcription Factor 2 (OLIG2) Function in Live Cells Using Massively Parallel Fluorescence Correlation Spectroscopy Integrated with Fluorescence Lifetime Imaging Microscopy (mpFCS/FLIM). Analytical Chemistry, 2021, 93, 12011-12021.	6.5	8
327	Cajal on Neurons, Molecules, and Consciousness. Annals of the New York Academy of Sciences, 2001, 929, 147-151.	3.8	7
328	α7 and β2* nicotinic receptors control monoamine-mediated locomotor response. NeuroReport, 2010, 21, 1085-1089.	1.2	7
329	Synaptic Epigenesis and the Evolution of Higher Brain Functions. Research and Perspectives in Neurosciences, 2012, , 11-22.	0.4	7
330	A Model for Motor Endplate Morphogenesis: Diffusible Morphogens, Transmembrane Signaling, and Compartmentalized Gene Expression. Neural Computation, 1993, 5, 341-358.	2.2	6
331	The Molecular Organization of Self-awareness: Paralimbic Dopamine-GABA Interaction. Frontiers in Systems Neuroscience, 2020, 14, 3.	2.5	6
332	Studies of tubocurarine labelled with iodine or tritium. Biochimie, 1973, 55, 919-924.	2.6	5
333	Partners make patterns in morphogenesis. Current Biology, 1994, 4, 1046-1047.	3.9	4
334	John Paul Merlie (1945–1995). Neuron, 1995, 15, 21.	8.1	3
335	Beauty in the brain: for a neuroscience of art. Rendiconti Lincei, 2012, 23, 315-320.	2.2	3
336	Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex. Cell Reports, 2021, 37, 110035.	6.4	3
337	Epigenesis, Synapse Selection, Cultural Imprints, and Human Brain Development. , 2022, , 27-49.		3
338	Chapter 2 Molecular biology of acetylcholine receptor long-term evolution during motor end-plate morphogenesis. Progress in Brain Research, 1989, 79, 15-25.	1.4	2
339	Molecular Mechanisms of Synaptic Transmission and Its Regulation: Application to Models of Cognitive Functions. Neurolmage, 1996, 4, S7-S11.	4.2	2
340	Allosteric receptors after 30 years. Rendiconti Lincei, 2006, 17, 59-96.	2.2	2
341	Abnormal response of dopaminergic neurons to nicotine without perturbation of nicotinic receptors in αCGRP knock-out mice. Brain Research, 2008, 1228, 89-96.	2.2	2
342	Studies on the molecular mechanism of the response of an excitable membrane to cholinergic agents. Chemistry and Physics of Lipids, 1972, 8, 355-365.	3.2	1

#	Article	IF	CITATIONS
343	Comparison of embryonic and adult torpedo acetylcholine receptor by sedimentation characteristics and antigenicity. International Journal of Developmental Neuroscience, 1984, 2, 549-555.	1.6	1
344	Allosteric proteins: From regulatory enzymes to receptors. Rendiconti Lincei, 2006, 17, 11-29.	2.2	1
345	Two Cultures and Our Encyclopaedic Brain. European Review, 2019, 27, 54-65.	0.7	1
346	αâ€Conotoxin BulA[T5A;P6O]: a novel ligand that discriminates between 06 β4 and 0:6 β2 nicotinic acetylcholine receptors and blocks nicotineâ€stimulated norepinephrine release. FASEB Journal, 2010, 24, 5113-5123.	0.5	1
347	Reflections of a neuroscientist on the origins of ethics. European Review, 1999, 7, 351-358.	0.7	0
348	Structural Basis for Allosteric Transitions in the GLIC Pentameric Proton-Gated Ion Channel. Biophysical Journal, 2014, 106, 343a.	0.5	0
349	Single Molecule Motion Map of GLIC by Diffracted X-Ray Tracking. Biophysical Journal, 2015, 108, 191a-192a.	0.5	0
350	Synaptic Epigenesis and the Evolution of Higher Brain Functions. Exploring Complexity, 2016, , 21-34.	0.1	0
351	Foreword. Avant-propos. Revue D'Economie Politique, 2008, Vol. 118, 1-2.	0.5	0
352	De la molécule au cerveau. Le Débat, 1982, nº 20, 92-122.	0.1	0
353	A tribute to Eddy Fischer (April 6, 1920–August 27, 2021): Passionate biochemist and mentor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121815119.	7.1	0