Lars Ã-sterlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined chemoresistive and in situ FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing. Sensors and Actuators B: Chemical, 2022, 353, 131125.	7.8	24
2	Embedded Oxidized Ag–Pd–Cu Ultrathin Metal Alloy Film Prepared at Low Temperature with Excellent Electronic, Optical, and Mechanical Properties. ACS Applied Materials & Interfaces, 2022, 14, 15756-15764.	8.0	4
3	Alkali ion diffusion and structure of chemically strengthened TiO2 doped soda-lime silicate glass. Journal of Non-Crystalline Solids, 2022, 586, 121564.	3.1	5
4	Energy Alignment of Quantum-Confined ZnO Particles with Copper Oxides for Heterojunctions with Improved Photocatalytic Performance. ACS Nanoscience Au, 2022, 2, 128-139.	4.8	2
5	Multicolored absorbing nickel oxide films based on anodic electrochromism and structural coloration. Journal of Applied Physics, 2021, 129, .	2.5	9
6	Polarized and nonâ€polarized Raman spectroscopy of ZnO crystals: Method for determination of crystal growth and crystal plane orientation for nanomaterials. Journal of Raman Spectroscopy, 2021, 52, 1395-1405.	2.5	10
7	Effects of Anodic Aluminum Oxide Substrate Pore Geometry on the Gas-Phase Photocatalytic Activity of ZnO/Al2O3 Composites Prepared by Atomic Layer Deposition. Symmetry, 2021, 13, 1456.	2.2	6
8	Copper–zinc oxide heterojunction catalysts exhibiting enhanced photocatalytic activity prepared by a hybrid deposition method. RSC Advances, 2021, 11, 10224-10234.	3.6	9
9	Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System. Sensors, 2021, 21, 584.	3.8	5
10	Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry, 2020, 132, 107404.	4.6	57
11	Electrochromism in Ni Oxide Thin Films Made by Advanced Gas Deposition and Sputtering: A Comparative Study Demonstrating the Significance of Surface Effects. Journal of the Electrochemical Society, 2020, 167, 116519.	2.9	4
12	Determination of Volatile Organic Compounds in Water by Attenuated Total Reflection Infrared Spectroscopy and Diamond-Like Carbon Coated Silicon Wafers. Chemosensors, 2020, 8, 75.	3.6	7
13	Ni–Ag Nanostructure-Modified Graphitic Carbon Nitride for Enhanced Performance of Solar-Driven Hydrogen Production from Ethanol. ACS Applied Energy Materials, 2020, 3, 10131-10138.	5.1	8
14	Photoinduced Adsorption and Oxidation of SO ₂ on Anatase TiO ₂ (101). Journal of the American Chemical Society, 2020, 142, 21767-21774.	13.7	43
15	Exhaled air analysis as a potential fast method for early diagnosis of dengue disease. Sensors and Actuators B: Chemical, 2020, 310, 127859.	7.8	10
16	An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. Materials Science and Engineering C, 2020, 110, 110665.	7.3	46
17	Synergistic TiO2/VO2 Window Coating with Thermochromism, Enhanced Luminous Transmittance, and Photocatalytic Activity. Joule, 2019, 3, 2457-2471.	24.0	42
18	Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites. Applied Catalysis B: Environmental, 2019, 259, 118097.	20.2	32

#	Article	IF	CITATIONS
19	Surface Properties of Reduced and Stoichiometric TiO ₂ As Probed by SO ₂ Adsorption. Journal of Physical Chemistry C, 2019, 123, 24549-24557.	3.1	8
20	Corrosion Detection by Infrared Attenuated Total Reflection Spectroscopy via Diamond-Like Carbon-Coated Silicon Wafers and Iron-Sensitive Dyes. Sensors, 2019, 19, 3373.	3.8	6
21	Electrochromic WO ₃ thin films attain unprecedented durability by potentiostatic pretreatment. Journal of Materials Chemistry A, 2019, 7, 2908-2918.	10.3	66
22	Characterization of nanocrystalline-nanoporous nickel oxide thin films prepared by reactive advanced gas deposition. Materials Chemistry and Physics, 2019, 227, 98-104.	4.0	10
23	Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites. Catalysis Science and Technology, 2019, 9, 1816-1824.	4.1	13
24	Transparent TiO2 and ZnO Thin Films on Glass for UV Protection of PV Modules. Frontiers in Materials, 2019, 6, .	2.4	32
25	Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosensors and Bioelectronics, 2018, 107, 170-177.	10.1	79
26	Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique. Nanotechnology, 2018, 29, 065603.	2.6	9
27	Ligand-Capped Ultrapure Metal Nanoparticle Sensors for the Detection of Cutaneous Leishmaniasis Disease in Exhaled Breath. ACS Sensors, 2018, 3, 2532-2540.	7.8	18
28	Photodegradation of Stearic Acid Adsorbed on Copper Oxide Heterojunction Thin Films Prepared by Magnetron Sputtering. ChemEngineering, 2018, 2, 40.	2.4	4
29	Advanced Oxide Materials â^ Growth, Application, Characterization. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800546.	1.8	0
30	SO2 adsorption on rutile TiO2(110): An infrared reflection-absorption spectroscopy and density functional theory study. Surface Science, 2018, 677, 46-51.	1.9	11
31	Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation. Journal of Hazardous Materials, 2018, 359, 482-490.	12.4	23
32	Spectral Selective Solar Light Enhanced Photocatalysis: TiO2/TiAlN Bilayer Films. Topics in Catalysis, 2018, 61, 1607-1614.	2.8	4
33	Diagnosis of Human Echinococcosis via Exhaled Breath Analysis: A Promise for Rapid Diagnosis of Infectious Diseases Caused by Helminths. Journal of Infectious Diseases, 2018, 219, 101-109.	4.0	10
34	Cationâ€∤Anionâ€Based Electrochemical Degradation and Rejuvenation of Electrochromic Nickel Oxide Thin Films. ChemElectroChem, 2018, 5, 3548-3556.	3.4	10
35	Polycrystalline Diamond Thin-Film Waveguides for Mid-Infrared Evanescent Field Sensors. ACS Omega, 2018, 3, 6190-6198.	3.5	14
36	Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade		5

lasers. , 2018, , .

#	Article	IF	CITATIONS
37	Exhaled breath analysis for gastric cancer diagnosis in Colombian patients. Oncotarget, 2018, 9, 28805-28817.	1.8	31
38	Co-adsorption of oxygen and formic acid on rutile TiO 2 (110) studied by infrared reflection-absorption spectroscopy. Surface Science, 2017, 663, 47-55.	1.9	10
39	The Importance of Oxygen Vacancies in Nanocrystalline WO _{3–<i>x</i>} Thin Films Prepared by DC Magnetron Sputtering for Achieving High Photoelectrochemical Efficiency. Journal of Physical Chemistry C, 2017, 121, 7412-7420.	3.1	35
40	Diamond Waveguides for Infrared Spectroscopy and Sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 87-117.	0.5	2
41	Fluctuation-enhanced and conductometric gas sensing with nanocrystalline NiO thin films: A comparison. Sensors and Actuators B: Chemical, 2017, 242, 132-139.	7.8	9
42	ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120. Arabian Journal of Chemistry, 2017, 10, S3501-S3507.	4.9	17
43	Demonstration of Slow Photon Chemistry on Multilayer Inverse Opals. Science of Advanced Materials, 2017, 9, 1947-1952.	0.7	1
44	Sputter-Deposited Indium–Tin Oxide Thin Films for Acetaldehyde Gas Sensing. Coatings, 2016, 6, 19.	2.6	5
45	Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles. Nanomaterials, 2016, 6, 83.	4.1	5
46	Midâ€infrared thinâ€film diamond waveguides combined with tunable quantum cascade lasers for analyzing the secondary structure of proteins. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2117-2123.	1.8	29
47	Ultrapure Organically Modified Gold Nanoparticles for Breath Analysis. Procedia Engineering, 2016, 168, 133-136.	1.2	4
48	Nanocrystalline diamond sensor targeted for selective CRP detection: an ATR-FTIR spectroscopy study. Analytical and Bioanalytical Chemistry, 2016, 408, 3675-3680.	3.7	11
49	Band gap states in nanocrystalline WO ₃ thin films studied by soft x-ray spectroscopy and optical spectrophotometry. Journal of Physics Condensed Matter, 2016, 28, 475802.	1.8	25
50	Gas-phase photocatalytic activity of sputter-deposited anatase TiO2 films: Effect of ã€^0 0 1〉 preferential orientation, surface temperature and humidity. Journal of Catalysis, 2016, 335, 187-196.	6.2	32
51	Nickel oxide thin film sensor for fluctuation-enhanced gas sensing of formaldehyde. , 2015, , .		Ο
52	Simulation of IRRAS Spectra for Molecules on Oxide Surfaces: CO on TiO ₂ (110). Journal of Physical Chemistry C, 2015, 119, 5403-5411.	3.1	16
53	Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes. Biochemical and Biophysical Research Communications, 2015, 464, 336-341.	2.1	18
54	Graphene oxide nanoparticle attachment and its toxicity on living lung epithelial cells. RSC Advances, 2015, 5, 59447-59457.	3.6	9

LARS ÖSTERLUND

#	Article	IF	CITATIONS
55	Quantitative relation between photocatalytic activity and degree of ã€^001〉 orientation for anatase TiO ₂ thin films. Journal of Materials Chemistry A, 2015, 3, 17369-17375.	10.3	16
56	Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles. Toxicology and Applied Pharmacology, 2015, 288, 1-11.	2.8	23
57	Demonstrating Online Monitoring of Air Pollutant Photodegradation in a 3D Printed Gas-Phase Photocatalysis Reactor. Journal of Chemical Education, 2015, 92, 678-682.	2.3	34
58	<i>In Situ </i> <scp>FTIR</scp> Spectroscopy Study of the Photodegradation of Acetaldehyde and azo Dye Photobleaching on Bismuthâ€Modified TiO ₂ . Photochemistry and Photobiology, 2015, 91, 48-58.	2.5	6
59	Fabrication of photonic opal structures on different support materials by convective evaporation. Journal of Physics: Conference Series, 2014, 559, 012007.	0.4	1
60	Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron sputtering. Journal of Applied Physics, 2014, 115, .	2.5	93
61	Infrared spectroscopy study of adsorption and photodecomposition of formic acid on reduced and defective rutile TiO2 (110) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	12
62	Fine control of the amount of preferential <001> orientation in DC magnetron sputtered nanocrystalline TiO ₂ films. Journal of Physics: Conference Series, 2014, 559, 012011.	0.4	2
63	Role of bismuth in nano-structured doped TiO2 photocatalyst prepared by environmentally benign soft synthesis. Journal of Materials Science, 2014, 49, 3560-3571.	3.7	11
64	Acetaldehyde adsorption and condensation on anatase TiO2: Influence of acetaldehyde dimerization. Journal of Molecular Catalysis A, 2014, 381, 77-88.	4.8	20
65	Adsorption of formic acid on rutile TiO2 (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study. Journal of Chemical Physics, 2014, 140, 034705.	3.0	49
66	Formic Acid on TiO _{2–<i>x</i>} (110): Dissociation, Motion, and Vacancy Healing. Journal of Physical Chemistry C, 2014, 118, 14876-14887.	3.1	15
67	Diamonds Are a Spectroscopist's Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors. Analytical Chemistry, 2014, 86, 8136-8141.	6.5	43
68	Tuning the Photocatalytic Activity of Anatase TiO2 Thin Films by Modifying the Preferred <001> Grain Orientation with Reactive DC Magnetron Sputtering. Coatings, 2014, 4, 587-601.	2.6	23
69	Porous Nickel Oxide Film Sensor for Formaldehyde. Journal of Physics: Conference Series, 2014, 559, 012012.	0.4	4
70	Photocatalytic oxide films in the built environment. Journal of Physics: Conference Series, 2014, 559, 012009.	0.4	3
71	TiO ₂ -Based Gas Sensor: A Possible Application to SO ₂ . ACS Applied Materials & Interfaces, 2013, 5, 8516-8522.	8.0	186
72	Adsorption and photo-oxidation of acetaldehyde on TiO2 and sulfate-modified TiO2: Studies by in situ FTIR spectroscopy and micro-kinetic modeling. Journal of Catalysis, 2013, 307, 265-274.	6.2	56

#	Article	IF	CITATIONS
73	Large Uptake of Titania and Iron Oxide Nanoparticles in the Nucleus of Lung Epithelial Cells as Measured by Raman Imaging and Multivariate Classification. Biophysical Journal, 2013, 105, 310-319.	0.5	57
74	Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles. Journal of Colloid and Interface Science, 2013, 392, 349-358.	9.4	33
75	Electronic and optical properties of nanocrystalline WO ₃ thin films studied by optical spectroscopy and density functional calculations. Journal of Physics Condensed Matter, 2013, 25, 205502.	1.8	43
76	Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles. Journal of Solid State Chemistry, 2013, 199, 212-223.	2.9	16
77	Structural and optical properties of visible active photocatalytic WO ₃ thin films prepared by reactive dc magnetron sputtering. Journal of Materials Research, 2012, 27, 3130-3140.	2.6	33
78	Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology, 2012, 6, 623-634.	3.0	64
79	Solar Light Degradation of Trimethyl Phosphate and Triethyl Phosphate on Dry and Water-Precovered Hematite and Goethite Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 14917-14929.	3.1	27
80	Spectroscopic Study of the Photofixation of SO ₂ on Anatase TiO ₂ Thin Films and Their Oleophobic Properties. ACS Applied Materials & amp; Interfaces, 2012, 4, 672-679.	8.0	40
81	Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Separation and Purification Technology, 2012, 98, 270-279.	7.9	91
82	Photocatalytic degradation of azo dye Reactive Red 15 over synthesized titanium and zinc oxides photocatalysts: a comparative study. Desalination and Water Treatment, 2012, 48, 120-129.	1.0	29
83	Visualization of custom-tailored iron oxide nanoparticles chemistry, uptake, and toxicity. Nanoscale, 2012, 4, 7383.	5.6	34
84	Adsorption of Trimethyl Phosphate on Maghemite, Hematite, and Goethite Nanoparticles. Journal of Physical Chemistry A, 2011, 115, 8948-8959.	2.5	71
85	Polymorph―and Sizeâ€Dependent Uptake and Toxicity of TiO ₂ Nanoparticles in Living Lung Epithelial Cells. Small, 2011, 7, 514-523.	10.0	108
86	Influence of phonon confinement, surface stress, and zirconium doping on the Raman vibrational properties of anatase TiO ₂ nanoparticles. Journal of Raman Spectroscopy, 2011, 42, 2026-2035.	2.5	32
87	Structure-Reactivity Relationships of Anatase and Rutile TiO ₂ Nanocrystals Measured by <i>In Situ</i> Vibrational Spectroscopy. Solid State Phenomena, 2010, 162, 203-219.	0.3	11
88	Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on Anatase, Brookite, and Rutile TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 14121-14132.	3.1	169
89	Photo-fixation of SO2 in nanocrystalline TiO2 films prepared by reactive DC magnetron sputtering. Thin Solid Films, 2009, 518, 1341-1344.	1.8	17
90	Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles. Applied Catalysis B: Environmental, 2009, 92, 401-410.	20.2	49

#	Article	IF	CITATIONS
91	Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials, 2009, 30, 1524-1531.	11.4	84
92	Effect of sample preparation and humidity on the photodegradation rate of CEES on pure and Zn doped anatase TiO2 nanoparticles prepared by homogeneous hydrolysis. Applied Catalysis B: Environmental, 2009, 88, 194-203.	20.2	27
93	Oxygen Diffusion and Photon-Induced Decomposition of Acetone on Zr- and Nb-Doped TiO2 Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 3810-3818.	3.1	18
94	Warfare Agents Degradation on Zirconium Doped Titania. Microscopy and Microanalysis, 2009, 15, 1038-1039.	0.4	5
95	A novel ATR-FTIR method for functionalised surface characterisation. Surface and Interface Analysis, 2008, 40, 623-626.	1.8	8
96	Microemulsion-Mediated Room-Temperature Synthesis of High-Surface-Area Rutile and Its Photocatalytic Performance. Journal of Physical Chemistry C, 2007, 111, 6789-6797.	3.1	54
97	A Novel ATR-FTIR Approach for Characterisation and Identification of Ex Situ Immobilised Species. ChemPhysChem, 2007, 8, 712-722.	2.1	17
98	Nanomaterials for benign indoor environments: Electrochromics for "smart windowsâ€; sensors for air quality, and photo-catalysts for air cleaning. Solar Energy Materials and Solar Cells, 2007, 91, 355-365.	6.2	126
99	A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: Role of surface intermediates. Journal of Catalysis, 2007, 251, 131-144.	6.2	128
100	Lithographic Techniques in Nanocatalysis. Nanoscience and Technology, 2007, , 269-341.	1.5	5
101	Adsorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin Films. Journal of Physical Chemistry B, 2006, 110, 1210-1220.	2.6	159
102	Adsorption and photocatalytic degradation of diisopropyl fluorophosphate and dimethyl methylphosphonate over dry and wet rutile TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 125-134.	3.9	50
103	Surface characteristics and electronic structure of photocatalytic reactions on TiO 2 and doped TiO 2 nanoparticles. , 2006, , .		4
104	Optimizing photocatalytic oxidation for purifying air. SPIE Newsroom, 2006, , .	0.1	2
105	Solar light decomposition of DFP on the surface of anatase and rutile TiO2 prepared by hydrothermal treatment of microemulsions. Surface Science, 2005, 584, 98-105.	1.9	15
106	In Situ Reactivity and FTIR Study of the Wet and Dry Photooxidation of Propane on Anatase TiO2. Journal of Physical Chemistry B, 2005, 109, 10886-10895.	2.6	39
107	Oxidation of Pt(110). Physical Review Letters, 2004, 93, 146104.	7.8	129
108	A transient in situ FTIR and XANES study of CO oxidation over Pt/AlO catalysts. Journal of Catalysis, 2004, 226, 422-434.	6.2	122

#	Article	IF	CITATIONS
109	Reactivity of Pt/ceria and Pt/alumina planar model catalysts prepared by colloidal lithography. Journal of Catalysis, 2003, 215, 94-107.	6.2	36
110	Nanofabrication of Planar Model Catalysts by Colloidal Lithography:Â Pt/Ceria and Pt/Alumina. Langmuir, 2003, 19, 458-468.	3.5	41
111	Preparation of Nanosize Anatase and Rutile TiO2by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. Journal of Physical Chemistry B, 2002, 106, 10674-10679.	2.6	401
112	On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation. Journal of Catalysis, 2002, 211, 387-397.	6.2	355
113	On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation. Journal of Catalysis, 2002, 211, 387-397.	6.2	238
114	Insulin resistance, dietary cholesterol, and cholesterol concentration in postmenopausal women. Metabolism: Clinical and Experimental, 2001, 50, 594-597.	3.4	32
115	CO Oxidation Bistability Diagrams for Pt/CeOx and Pt/SiO2 Model Catalysts Prepared by Electron-Beam Lithography. Journal of Catalysis, 2001, 201, 275-285.	6.2	46
116	A high-pressure scanning tunneling microscope. Review of Scientific Instruments, 2001, 72, 3537-3542.	1.3	194
117	Bridging the Pressure Gap in Surface Science at the Atomic Level:H/Cu(110). Physical Review Letters, 2001, 86, 460-463.	7.8	99
118	Diffusion of N Adatoms on the Fe(100) Surface. Physical Review Letters, 2000, 84, 4898-4901.	7.8	65
119	Electronic structure and kinetics of K on graphite. Journal of Chemical Physics, 2000, 112, 4788-4796.	3.0	27
120	Quantitative Determination of Adsorbate-Adsorbate Interactions. Physical Review Letters, 1999, 83, 4812-4815.	7.8	82
121	Potassium adsorption on graphite(0001). Surface Science, 1999, 420, 174-189.	1.9	53
122	Photoinduced desorption of potassium atoms from a two dimensional overlayer on graphite. Journal of Chemical Physics, 1997, 106, 982-1002.	3.0	51
123	Dissociative sticking ofO2on Al(111). Physical Review B, 1997, 55, 15452-15455.	3.2	152
124	Photoinduced desorption of potassium atoms from graphite. Surface Science, 1996, 363, 247-251.	1.9	7
125	Photon induced desorption and intercalation of potassium atoms deposited on graphite (0001). Applied Surface Science, 1996, 106, 186-192.	6.1	6
126	Water adsorption on graphite (0001). Vacuum, 1995, 46, 1109-1112.	3.5	85

Lars Ã-sterlund

#	Article	IF	CITATIONS
127	A Prospective, Randomized Trial of Phenytoin in Nonepileptic Subjects With Reduced HDL Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 2151-2156.	2.4	24
128	Water Adsorption and Coadsorption with Potassium on Graphite(0001). Langmuir, 1995, 11, 1201-1214.	3.5	70
129	Photostimulated desorption of metal adatoms: potassium on graphite. Surface Science, 1994, 311, L724-L730.	1.9	15
130	Interaction of water with potassium on graphite: A HREELS study. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 279-285.	1.7	3
131	Fourier-Transform Infrared and Raman Spectroscopy of Pure and Doped TiO2 Photocatalysts. , 0, , 189-238.		1
132	What Makes a Good TiO2 Photocatalyst?. Ceramic Engineering and Science Proceedings, 0, , 19-35.	0.1	1
133	TiO ₂ /VO ₂ Bilayer Coatings for Glazing: Synergistically Enhanced Photocatalytic, Thermochromic, and Luminous Properties. SSRN Electronic Journal, 0, , .	0.4	0
134	Photodecomposition of Acetone on ZrOx-TiO2 Thin Films in O2 Excess and Deficit Conditions. , 0, , 175-186.		1