Alexey Teplyakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322188/publications.pdf Version: 2024-02-01

ALEVEN TEDI VAKON

#	Article	IF	CITATIONS
1	Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies, 2019, 8, 55.	2.5	273
2	Structure-based engineering of a monoclonal antibody for improved solubility. Protein Engineering, Design and Selection, 2010, 23, 643-651.	2.1	187
3	Second antibody modeling assessment (AMAâ€II). Proteins: Structure, Function and Bioinformatics, 2014, 82, 1553-1562.	2.6	129
4	An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods, 2014, 65, 114-126.	3.8	127
5	Channeling of ammonia in glucosamine-6-phosphate synthase 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 313, 1093-1102.	4.2	115
6	Antibody modeling assessment. Proteins: Structure, Function and Bioinformatics, 2011, 79, 3050-3066.	2.6	114
7	Structural Basis for the Dual Recognition of IL-12 and IL-23 by Ustekinumab. Journal of Molecular Biology, 2010, 402, 797-812.	4.2	93
8	Epitope mapping and structural basis for the recognition of phosphorylated tau by the antiâ€ŧau antibody AT8. Proteins: Structure, Function and Bioinformatics, 2016, 84, 427-434.	2.6	84
9	Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16218-16223.	7.1	71
10	Mechanisms of self-association of a human monoclonal antibody CNTO607. Protein Engineering, Design and Selection, 2012, 25, 531-538.	2.1	70
11	Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Engineering, Design and Selection, 2012, 25, 107-117.	2.1	69
12	IgG2 Fc structure and the dynamic features of the IgG CH2–CH3 interface. Molecular Immunology, 2013, 56, 131-139.	2.2	60
13	Antibody modeling assessment II. Structures and models. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1563-1582.	2.6	60
14	Crystal Structure of the YchF Protein Reveals Binding Sites for GTP and Nucleic Acid. Journal of Bacteriology, 2003, 185, 4031-4037.	2.2	56
15	Epitope Mapping of Anti-Interleukin-13 Neutralizing Antibody CNTO607. Journal of Molecular Biology, 2009, 389, 115-123.	4.2	55
16	Human Framework Adaptation of a Mouse Anti-Human IL-13 Antibody. Journal of Molecular Biology, 2010, 398, 214-231.	4.2	55
17	Structural diversity in a human antibody germline library. MAbs, 2016, 8, 1045-1063.	5.2	51
18	From Lobry de Bruyn to enzyme-catalyzed ammonia channelling: molecular studies of D-glucosamine-6P synthase. Natural Product Reports, 2002, 19, 60-69.	10.3	46

ALEXEY TEPLYAKOV

#	Article	IF	CITATIONS
19	Crystal structure of theEscherichia coli YcdX protein reveals a trinuclear zinc active site. Proteins: Structure, Function and Bioinformatics, 2003, 51, 315-318.	2.6	43
20	Crystal structure of the YjeE protein fromHaemophilus influenzae: A putative Atpase involved in cell wall synthesis. Proteins: Structure, Function and Bioinformatics, 2002, 48, 220-226.	2.6	40
21	Coevolution of Antibody Stability and $\hat{V^{P}}$ CDR-L3 Canonical Structure. Journal of Molecular Biology, 2010, 402, 708-719.	4.2	38
22	Crystal Structure of Dephospho-Coenzyme A Kinase from Haemophilus influenzae. Journal of Structural Biology, 2001, 136, 119-125.	2.8	37
23	Lateral Clustering of TLR3:dsRNA Signaling Units Revealed by TLR3ecd:3Fabs Quaternary Structure. Journal of Molecular Biology, 2012, 421, 112-124.	4.2	37
24	Promoting crystallization of antibody–antigen complexes <i>via</i> microseed matrix screening. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 927-933.	2.5	34
25	Crystal Structure of the YgfZ Protein from Escherichia coli Suggests a Folate-Dependent Regulatory Role in One-Carbon Metabolism. Journal of Bacteriology, 2004, 186, 7134-7140.	2.2	33
26	Crystal structure of Bâ€cell coâ€receptor CD19 in complex with antibody B43 reveals an unexpected fold. Proteins: Structure, Function and Bioinformatics, 2018, 86, 495-500.	2.6	31
27	Development of a CD123xCD3 Bispecific Antibody (JNJ-63709178) for the Treatment of Acute Myeloid Leukemia (AML). Blood, 2016, 128, 2824-2824.	1.4	27
28	Structural basis for high selectivity of anti-CCL2 neutralizing antibody CNTO 888. Molecular Immunology, 2012, 51, 227-233.	2.2	23
29	Crystal structure of the Escherichia coli YjiA protein suggests a GTP-dependent regulatory function. Proteins: Structure, Function and Bioinformatics, 2003, 54, 371-374.	2.6	22
30	Crystal Structure of the Bacterial YhcH Protein Indicates a Role in Sialic Acid Catabolism. Journal of Bacteriology, 2005, 187, 5520-5527.	2.2	21
31	Structure of the EMMPRIN Nâ€ŧerminal domain 1: Dimerization via βâ€strand swapping. Proteins: Structure, Function and Bioinformatics, 2009, 77, 1009-1014.	2.6	19
32	Antigen recognition by antibody C836 through adjustment of V _L /V _H packing. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1165-1167.	0.7	17
33	Canonical structures of short CDR‣3 in antibodies. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1668-1673.	2.6	17
34	Protein crystallization with microseed matrix screening: application to human germline antibody Fabs. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1107-1115.	0.8	17
35	Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1656-1667.	2.6	15
36	Crystal Structure of the Petal Death Protein from Carnation Flowerâ€,‡. Biochemistry, 2005, 44, 16377-16384.	2.5	14

ALEXEY TEPLYAKOV

#	Article	IF	CITATIONS
37	Discovery and Functional Characterization of hPT3, a Humanized Anti-Phospho Tau Selective Monoclonal Antibody. Journal of Alzheimer's Disease, 2020, 77, 1397-1416.	2.6	12
38	Crystallization of a challenging antigen–antibody complex: TLR3 ECD with three noncompeting Fabs. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1290-1295.	0.7	11
39	Structural insights into humanization of anti-tissue factor antibody 10H10. MAbs, 2018, 10, 269-277.	5.2	11
40	Synthesis by native chemical ligation and crystal structure of human CCL2. Biopolymers, 2010, 94, 350-359.	2.4	9
41	Crystal structure of human germline antibody 3-23/B3. Molecular Immunology, 2011, 48, 1586-1588.	2.2	9
42	Câ€ŧerminal βâ€strand swapping in a consensusâ€derived fibronectin Type III scaffold. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1359-1369.	2.6	9
43	Conformational flexibility of an anti-IL-13 DARPinâ€. Protein Engineering, Design and Selection, 2016, 30, 31-37.	2.1	9
44	Crystal structure of CD27 in complex with a neutralizing noncompeting antibody. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 294-299.	0.8	9
45	Crystal structure of tissue factor in complex with antibody 10H10 reveals the signaling epitope. Cellular Signalling, 2017, 36, 139-144.	3.6	9
46	Crystal structure of theEscherichia coli Tas protein, an NADP(H)-dependent aldo-keto reductase. Proteins: Structure, Function and Bioinformatics, 2003, 53, 323-325.	2.6	7
47	Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function. BMC Structural Biology, 2004, 4, 5.	2.3	6
48	On the domain pairing in chimeric antibodies. Molecular Immunology, 2010, 47, 2422-2426.	2.2	6
49	Structural evidence for a constrained conformation of short CDR‣3 in antibodies. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1679-1683.	2.6	6
50	Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography. Molecular Immunology, 2017, 83, 92-99.	2.2	6
51	Hisâ€ŧag binding by antibody C706 mimics βâ€amyloid recognition. Journal of Molecular Recognition, 2011, 24, 570-575.	2.1	5
52	Induced conformational change in human <scp>IL</scp> â€4 upon binding of a signalâ€neutralizing <scp>DARP</scp> in. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1191-1197.	2.6	5
53	Surface salt bridges contribute to the extreme thermal stability of an <scp>FN3</scp> â€like domain from a thermophilic bacterium. Proteins: Structure, Function and Bioinformatics, 2022, 90, 270-281.	2.6	5
54	Nâ€ŧerminal βâ€strand swapping in a consensusâ€derived alternative scaffold driven by stabilizing hydrophobic interactions. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1527-1533.	2.6	4

Αιέχει Τεριγακον

#	Article	IF	CITATIONS
55	Structural insights into chemokine CCL17 recognition by antibody M116. Biochemistry and Biophysics Reports, 2018, 13, 27-31.	1.3	3
56	A coiled conformation of amyloid-β recognized by antibody C706. Alzheimer's Research and Therapy, 2017, 9, 66.	6.2	2
57	Noncanonical conformation of CDR L1 in the anti-IL-23 antibody CNTO4088. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 229-232.	0.7	1
58	Cover Image, Volume 86, Issue 5. Proteins: Structure, Function and Bioinformatics, 2018, 86, C4-C4.	2.6	0
59	Abstract 1492: Development of a CD123xCD3 bispecific antibody to treat acute myeloid leukemia (AML). , 2016, , .		0
60	Abstract 3813: Development of JNJ-64164711, a low fucose anti-GITR antibody for enhanced depletion of tumor regulatory T cells (Tregs). , 2018, , .		0