Michael Yarus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322177/publications.pdf Version: 2024-02-01

MICHAEL VADUS

#	Article	IF	CITATIONS
1	Optimal Evolution of the Standard Genetic Code. Journal of Molecular Evolution, 2021, 89, 45-49.	1.8	10
2	Crick Wobble and Superwobble in Standard Genetic Code Evolution. Journal of Molecular Evolution, 2021, 89, 50-61.	1.8	14
3	Specific binding of VegT mRNA localization signal to membranes in Xenopus oocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118952.	4.1	2
4	Fitting the standard genetic code into its triplet table. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
5	Evolution of the Standard Genetic Code. Journal of Molecular Evolution, 2021, 89, 19-44.	1.8	18
6	Non-Watson–Crick RNA synthesis suited to origin functions. Rna, 2018, 24, 90-97.	3.5	4
7	Eighty routes to a ribonucleotide world; dispersion and stringency in the decisive selection. Rna, 2018, 24, 1041-1055.	3.5	7
8	A twisted tRNA intermediate sets the threshold for decoding. journal of hand surgery Asian-Pacific volume, The, 2018, , 359-360.	0.4	0
9	Efficient Heritable Gene Expression Readily Evolves in RNA Pools. Journal of Molecular Evolution, 2017, 84, 236-252.	1.8	8
10	The Genetic Code and RNA-Amino Acid Affinities. Life, 2017, 7, 13.	2.4	65
11	Biochemical Refinement Before Genetics: Chance Utility. Journal of Molecular Evolution, 2016, 83, 89-92.	1.8	6
12	Cross-backbone templating; ribodinucleotides made on poly(C). Rna, 2016, 22, 397-407.	3.5	11
13	Ahead and behind: a small, small RNA world. Rna, 2015, 21, 769-770.	3.5	6
14	Poly(U) RNA-templated synthesis of AppA. Rna, 2015, 21, 1818-1825.	3.5	13
15	A ribonucleotide Origin for Life – Fluctuation and Near-ideal Reactions. Origins of Life and Evolution of Biospheres, 2013, 43, 19-30.	1.9	10
16	Small aminoacyl transfer centers at GU within a larger RNA. RNA Biology, 2012, 9, 59-66.	3.1	13
17	Darwinian Behavior in a Cold, Sporadically Fed Pool of Ribonucleotides. Astrobiology, 2012, 12, 870-883.	3.0	16
18	The Plausibility of RNA-Templated Peptides: Simultaneous RNA Affinity for Adjacent Peptide Side Chains. Journal of Molecular Evolution, 2012, 74, 217-225.	1.8	16

#	Article	IF	CITATIONS
19	Getting Past the RNA World: The Initial Darwinian Ancestor. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003590-a003590.	5.5	68
20	The meaning of a minuscule ribozyme. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2902-2909.	4.0	41
21	Catalyzed and Spontaneous Reactions on Ribozyme Ribose. Journal of the American Chemical Society, 2011, 133, 6044-6050.	13.7	48
22	Climbing in 190 Dimensions. Science, 2011, 332, 181-182.	12.6	2
23	Natural and artificial RNAs occupy the same restricted region of sequence space. Rna, 2010, 16, 280-289.	3.5	21
24	Simple, recurring RNA binding sites for L-arginine. Rna, 2010, 16, 805-816.	3.5	35
25	Multiple translational products from a five-nucleotide ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4585-4589.	7.1	136
26	Nucleotides that are essential but not conserved; a sufficient L-tryptophan site in RNA. Rna, 2010, 16, 1915-1924.	3.5	11
27	Chiral histidine selection by D-ribose RNA. Rna, 2010, 16, 2370-2383.	3.5	12
28	RNA–Amino Acid Binding: A Stereochemical Era for the Genetic Code. Journal of Molecular Evolution, 2009, 69, 406-429.	1.8	166
29	Information, probability, and the abundance of the simplest RNA active sites. Frontiers in Bioscience - Landmark, 2008, Volume, 6060.	3.0	11
30	Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Research, 2006, 34, 2128-2136.	14.5	99
31	Abundance of correctly folded RNA motifs in sequence space, calculated on computational grids. Nucleic Acids Research, 2005, 33, 5924-5935.	14.5	60
32	Bring them back alive. Nature, 2005, 438, 40-40.	27.8	3
33	Error Minimization and Coding Triplet/Binding Site Associations Are Independent Features of the Canonical Genetic Code. Journal of Molecular Evolution, 2005, 61, 597-607.	1.8	32
34	RNA Affinity for Molecular L-Histidine; Genetic Code Origins. Journal of Molecular Evolution, 2005, 61, 226-235.	1.8	61
35	Size, constant sequences, and optimal selection. Rna, 2005, 11, 1701-1709.	3.5	55
36	A diminutive and specific RNA binding site for L-tryptophan. Nucleic Acids Research, 2005, 33, 5482-5493.	14.5	51

#	Article	IF	CITATIONS
37	A More Complex Isoleucine Aptamer with a Cognate Triplet. Journal of Biological Chemistry, 2005, 280, 19815-19822.	3.4	35
38	ORIGINS OF THE GENETIC CODE: The Escaped Triplet Theory. Annual Review of Biochemistry, 2005, 74, 179-198.	11.1	155
39	BayesFold: Rational 2Â folds that combine thermodynamic, covariation, and chemical data for aligned RNA sequences. Rna, 2004, 10, 1323-1336.	3.5	39
40	A membrane transporter for tryptophan composed of RNA. Rna, 2004, 10, 1541-1549.	3.5	45
41	RNA as Multitude/RNA as One. Chemistry and Biology, 2003, 10, 1146-1148.	6.0	0
42	Selection of the simplest RNA that binds isoleucine. Rna, 2003, 9, 1315-1322.	3.5	83
43	Finding specific RNA motifs: Function in a zeptomole world?. Rna, 2003, 9, 218-230.	3.5	52
44	Visualization of membrane RNAs. Rna, 2003, 9, 1353-1361.	3.5	50
45	A twisted tRNA intermediate sets the threshold for decoding. Rna, 2003, 9, 384-385.	3.5	38
46	Primordial Genetics: Phenotype of the Ribocyte. Annual Review of Genetics, 2002, 36, 125-151.	7.6	50
47	Acyl-CoAs from Coenzyme Ribozymesâ€. Biochemistry, 2002, 41, 723-729.	2.5	51
48	Coenzymes as coribozymes. Biochimie, 2002, 84, 877-888.	2.6	64
49	Phenylalanine-Binding RNAs and Genetic Code Evolution. Journal of Molecular Evolution, 2002, 54, 298-311.	1.8	33
50	Translation Termination. Molecular Cell, 2001, 8, 733-734.	9.7	1
51	RNA-Catalyzed Amino Acid Activationâ€. Biochemistry, 2001, 40, 6998-7004.	2.5	112
52	How Mitochondria Redefine the Code. Journal of Molecular Evolution, 2001, 53, 299-313.	1.8	88
53	Peptidyl transferase: ancient and exiguous. Chemistry and Biology, 2000, 7, R187-R190.	6.0	19
54	Suppression of eukaryotic translation termination by selected RNAs. Rna, 2000, 6, 1468-1479.	3.5	21

#	Article	IF	CITATIONS
55	RNA–ligand chemistry: A testable source for the genetic code. Rna, 2000, 6, 475-484.	3.5	104
56	RNA-Catalyzed CoA, NAD, and FAD Synthesis from Phosphopantetheine, NMN, and FMNâ€. Biochemistry, 2000, 39, 15548-15555.	2.5	98
57	A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. Rna, 1999, 5, 1482-1489.	3.5	92
58	Boundaries for an RNA world. Current Opinion in Chemical Biology, 1999, 3, 260-267.	6.1	61
59	Amino Acids as RNA Ligands: A Direct-RNA-Template Theory for the Code's Origin. Journal of Molecular Evolution, 1998, 47, 109-117.	1.8	126
60	RNA enzymes with two small-molecule substrates. Chemistry and Biology, 1998, 5, 669-678.	6.0	33
61	23S rRNA Similarity from Selection for Peptidyl Transferase Mimicry. Biochemistry, 1997, 36, 6614-6623.	2.5	42
62	5â€~-RNA Self-Capping from Guanosine Diphosphate. Biochemistry, 1997, 36, 6557-6563.	2.5	61
63	Small-molecule-substrate interactions with a self-aminoacylating ribozyme. Journal of Molecular Biology, 1997, 268, 631-639.	4.2	34
64	Essential structures of a self-aminoacylating RNA. Journal of Molecular Biology, 1997, 274, 519-529.	4.2	37
65	[19] Affinity selection-amplification from randomized ribooligonucleotide pools. Methods in Enzymology, 1996, 267, 315-335.	1.0	63
66	On malleability in the genetic code. Journal of Molecular Evolution, 1996, 42, 597-601.	1.8	96
67	An Inhibitor of Ribosomal Peptidyl Transferase Using the Transition-State Analogy. Biochemistry, 1995, 34, 385-390.	2.5	83
68	Diversity of Oligonucleotide Functions. Annual Review of Biochemistry, 1995, 64, 763-797.	11.1	816
69	An RNA pocket for an aliphatic hydrophobe. Nature Structural and Molecular Biology, 1994, 1, 287-292.	8.2	118
70	Transfer RNA Mutation and the Malleability of the Genetic Code. Journal of Molecular Biology, 1994, 235, 1377-1380.	4.2	163
71	tRNA Structure and Ribosomal Function. Journal of Molecular Biology, 1994, 235, 1395-1405.	4.2	35
72	Three small ribooligonucleotides with specific arginine sites. Biochemistry, 1993, 32, 5497-5502.	2.5	197

5

#	Article	IF	CITATIONS
73	How many catalytic RNAs? lons and the Cheshire cat conjecture FASEB Journal, 1993, 7, 31-39.	0.5	157
74	Co-optimization of ribozyme substrate stacking and l-arginine binding. Journal of Molecular Biology, 1992, 225, 945-949.	4.2	26
75	An axial binding site in the Tetrahymena precursor RNA. Journal of Molecular Biology, 1991, 222, 995-1012.	4.2	57
76	Genetic code origins. Nature, 1989, 342, 349-350.	27.8	68
77	Amber suppression relaxes stringent control by elongating stringent factor. Molecular Genetics and Genomics, 1982, 187, 254-264.	2.4	8
78	Mutations that overcome plasmid-mediated relaxation affect (p)ppGpp. Molecular Genetics and Genomics, 1980, 179, 119-124.	2.4	5
79	A cloned suppressor tRNA gene relaxes stringent control. Molecular Genetics and Genomics, 1980, 179, 125-133.	2.4	15
80	Intrinsic Precision of Aminoacyl-tRNA Synthesis Enhanced through Parallel Systems of Ligands. Nature: New Biology, 1972, 239, 106-108.	4.5	77
81	tRNA on the Ribosome: a Waggle Theory. , 0, , 443-469.		23